The 1st JUACEP Workshop at UCLA & University of Michigan

~March 7th - 17th, 2012~

Japan-US Advanced Collaborative Education Program Nagoya University

Copyright © JUACEP 2012 All Rights Reserved. Published in November, 2012

Leaders of JUACEP Prof. Noritsugu Umehara Prof. Yang Ju

Japan-US Advanced Collaborative Education Program Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN juacep@engg.nagoya-u.ac.jp http://www.juacep.engg.nagoya-u.ac.jp/ http://www.juacep.engg.nagoya-u.ac.jp/en/

Table of Contents

<1> Participants	2
<2> Leaflets	4
<3> Summaries and Posters	9
<4> Appendix	
a) Travel Schedule	87
b) Pictures	88

<1> Participants from Nagoya University

Name

Advisor

ASABA Masakazu	M1	Prof. E. Shamoto, Dept. Mechanical Science and Engineering
AZUCHI Kosuke	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering
BAI Mingrui	M1	Prof. H. Yamashita, Dept. Mechanical Science and Engineering
BANNO Miyako	B4	Prof. Obinata, Dept. Mechanical Science and Engineering
EMMEI Risa	M1	Prof. E. Shamoto, Dept. Mechanical Science and Engineering
HIRUTA Kosuke	M1	Prof. Y. Sakai, Dept. Mechanical Science and Engineering
HOSHINO Koichi	M1	Prof. Y. Sakai, Dept. Mechanical Science and Engineering
ISHIGURO Atsushi	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering
ISHIKAWA Yuta	B4	Prof. N. Umehara, Dept. Mechanical Science and Engineering
ITAKURA Takuya	M1	Prof. E. Tanaka, Dept. Mechanical Science and Engineering
ITO Keitaro	B4	Prof. F. Arai, Dept. Micro-Nano Systems Engineering
ITO Soichiro	M1	Prof. Y. Yamada, Dept. Mechanical Science and Engineering
KAWACHI Masaki	M2	Prof. N. Ohno, Dept. Mechanical Science and Engineering
KISHI Tomoya	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering
KITAZUME Kazutaka	B4	Prof. N. Umehara, Dept. Mechanical Science and Engineering
KOJIMA Naoki	B4	Prof. Y. Ju, Dept. Mechanical Science and Engineering
LEE Jaeryoung	M2	Prof. Obinata, Dept. Mechanical Science and Engineering
MAEDA Yu	M1	Prof. T. Fukuda, Dept. Mechanical Science and Engineering
MAKINO Takanori	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering
NAGANO Hikaru	M2	Prof. Y. Yamada, Dept. Mechanical Science and Engineering
NAKANISHI Naoya	B4	Prof. N. Umehara, Dept. Mechanical Science and Engineering
NAKASHIMA Takahiro	B4	Prof. Y. Ju, Dept. Mechanical Science and Engineering
NISHIMURA Hidenori	B4	Prof. N. Umehara, Dept. Mechanical Science and Engineering
OHARA Kenji	M1	Prof. N. Umehara, Dept. Mechanical Science and Engineering
SANO Ryohei	B4	Prof. Obinata, Dept. Mechanical Science and Engineering
SUMIGAMA Miho	B4	Prof. N. Umehara, Dept. Mechanical Science and Engineering
SUNADA Koji	M1	Prof. Y. Yamada, Dept. Mechanical Science and Engineering
SUZUKI Satoshi	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering
TANASE Toshikatsu	B4	Prof. Obinata, Dept. Mechanical Science and Engineering
TESHIMA Hiromasa	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering
UCHIYAMA Yoshiho	B4	Prof. Obinata, Dept. Mechanical Science and Engineering

WATANABE Tomoaki	M1	Prof. Y. Sakai, Dept. Mechanical Science and Engineering
YAGI Yuji	B4	Prof. N. Umehara, Dept. Mechanical Science and Engineering
YAMAGUCHI Akichika	M1	Prof. T. Niimi, Dept. Micro-Nano Systems Engineering
YAMAGUCHI Yuhei	B4	Prof. Y. Ju, Dept. Mechanical Science and Engineering
YAMAZAKI Yudai	M1	Prof. K. Sato, Dept. Micro-Nano Systems Engineering
YOSHIDA Takahiro	M1	Prof. Y. Ju, Dept. Mechanical Science and Engineering

 Faculty 	
Workshop in UCLA on March 8	Workshop in Univ. Mishigan on March 12
Prof. OBINATA Goro	Prof. UMEHARA Noritsugu
Prof. JU Yang	Prof. JU Yang
Assoc. Prof. SUZUKI Norikazu	Assoc. Prof. KOUSAKA Hiroyuki
Assoc. Prof. MORITA Yasuyuki	Lecturer ITO Yasumasa
Assist. Prof. TOKOROYAMA Takayuki	Assist. Prof. TOKUDA Satoru
Lecturer ITO Yasumasa	
Assist. Prof. TOKUDA Satoru	

• Research Associates of Micro-Nano Global COE – for Workshop in UCLA on March 8

DI Pei	D1	Dept. Micro-Nano Systems Engineering
INOUE Hiroshi	D1	Dept. Mechanical Science and Engineering
JUNG Jaehoon	D1	Dept. Micro-Nano Systems Engineering
KAMADA Shoichiro	D2	Dept. Mechanical Science and Engineering
KAMEYA Tomohiro	D2	Dept. Micro-Nano Systems Engineering
KOJIMA Masahiro	D2	Dept. Micro-Nano Systems Engineering
SHEN Yajing	D3	Dept. Micro-Nano Systems Engineering
XIANG Jingyu	D2	Dept. Mechanical Science and Engineering
YANG Zhan	D2	Dept. Micro-Nano Systems Engineering

Lecturer OOE Katsutoshi

The 1st Nagoya University - UCLA JUACEP Student Workshop on Mechanical Engineering and Science

March 8 - 9, 2012, at UCLA, Los Angeles, CA

Program

March 8 11:00 – 15:00 Poster presentation (De Neve Plaza (Rooms A & B))

March 9 13:00 – 16:00 Lab tours

Organizers: Profs. N. Umehara, Y. Ju (Nagoya U) Profs. C. M. Ho, T. C. Tsao (UCLA)

Japan-US Advanced Collaborative Education Program (JUACEP) Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN Phone: +81-52-789-3113 Fax: +81-52-789-3111 Email: yito@mech.nagoya-u.ac.jp, tokuda@esi.nagoya-u.ac.jp

No	Poster title	Presenter
	Wear particle analysis of DLC thin films focusing on structural changes and characteristics	Kenji Ohara
1	under oil lubrication	-
-	Fudamental research for the development of cooling radio knife tip to prevent blood	Yuta Ishikawa
2	coagulation on the tip	
2	The improvement of the properties of Si-CNxHy coating with Plasma CVD	Kazutaka Kitazume
	Fundamental research for high friction and small wear brake pad	Miho Sumigama
4	The effect of inner blade speed for outting sharpness of electric shaver	Naova Nakanishi
5	The election of the relationship between transfer layer and friction exettiniant of	Nauya Nakariishi
	The clarification of the relationship between transfer layer and friction coefficient of	Hidenori Nishimura
6	carbonaceous coaling	
7	The development of droplet free City coating with for Beam Assited Deposition	ruji ragi
	Numerical Study on Combustion Characteristics of Ultra-micro Combustor with Porous	Bai Mingrui
8	Chamber Wall	
9	Application of molecular tagging velocimetry to rarefied gas flow	AkichikaYamaguchi
10	A study on Human Avoidance Motion for Human-Robot coexistence system	Koji Sunada
	Basic Eye Part Collision Experiments against Sharp Mechanical Hazards for Severity	Soichiro Ito
11	Investigation	
	What appeals to human touch?	Hikaru Nagano
12	Comprehensive Study of Textures that Give an Incentive for Haptic Exploration	
	Noncontact nanometric positioning of probe tip for measurement of mechanical parameters of	Keitaro Ito
13	cell celle cell	
14	Occupant response in vehicle frontal crash	Takuya Itakura
15	Mechanical properties of carbon nanotubes with one-dimensional intramolecular junction	Masaki Kawachi
16	Road detection system outdoors –Image recognition with improved Flood Fill–	Yu Maeda
10	Parvlene based catheter type flow sensor for detecting breathing characteristics	Yudai Yamazaki
17	EHL Analysis of CMP Process by Using ALE Finite Element Method	Masakazu Asaba
18	Study on Tool Damage in High-speed Ceramic Milling of Superallovs	Risa Emmoi
19	Study on tool Damage in Fight-speed Ceramic Mining of Superanoys	
	On statistical properties of a turbulent boundary layer affected by the cylinder wake in a	Kosuke Hiruta
20	ireestream	Kaiabi Haabiya
	Measurements of High-Schmidt-Number Scalar Mixing Layers in Grid Turbulence by means of	Koichi Hoshino
21		
22	Turbulent Mixing in a Planar Liquid Jet with a Second-Order Chemical Reaction	Tomoaki Watanabe
23	Improvement of light detection of photodiode with local surface plasmon resonance	Atsushi Ishiguro
	Effect of cyclic mechanical stretching on stem cell-to-tenocyte differentiation: Assessment by	Satoshi Suzuki
24	extracellular matrix expression levels and structure	
25	Fabrication of high density Au nanowires by template method	Hiromasa leshima
26	Measurement of electrical properties of cell surface by Microwave Atomic Force Microscopy	Takanori Makino
	Nondestructive measurement and high-precision evaluation of the electrical conductivity of	Takaniro Yoshida
27	doped GaAs waters using microwaves	
	Evaluation of mechanical property of thin films using ultrasonic waves induced by remiosecond	Kosuke Azuchi
28	puise laser	
29	Development of latigue crack-nearing technique for metals	Nooki Koiimo
	Study of copper oxide nanowires generated by stressmigration at the selectivity metal	Naoki Kojima
30		Takahing Mala
31	Development of evaluation technique for electric property using Microwave AFM	Takaniro Nakashima
32	Study on detection of detamination in undirectional CFRP by microwave reflectometry	runei ramaguchi
33	What Is the Adequate Feature of a Robot for Children with Autism in Robot-Assisted Therapy?	Jaeryoung Lee
34	Sensory Perception by Electrical Stimulation	Miyako Banno
35	Simulation of Human Walking with Orthosis for Keeping Balance Upper Body	Yoshiho Uchiyama
36	Study of Operability Movement Steering System Using Lever Steering	Ryohei Sano
37	Analysis on Hand Motions in Activity of Daily Living	Toshikatsu Tanase
	Poster presentations by GCOE Program	
No	Poster title	Presenter
20	A Method to Study the Single Cell's Adhesion Strength via Nano Manipulation inside ESEM	Yajing Shen
30	Platinum Nanowire Growth via Field Emission Controlled by Nanorobtic Manipulator	Zhan Yang
39	A Fall Prevention Scheme for Intelligent Cane Robot by Using a Motor Driven Universal Joint	Pei Di
40	Magguroment of Rody Volume of Live C. clearens by Microshin	
41	The effect of Mech Design for Developing Flow Controllable Starts Computational Fluid	Macabira Kajima
40	Dynamics Study	wasanii o Kojima
42	Dynamics Study Variable-resolution Roadmans Considering Safety of Pobets	
43	Proceure Sensitive Paint measurement on a rotating dick	Tomobiro Komovo
44	Task Recod Design Method for Multi-joint Prosthetic Hands Heing Metion Applysic	Shoichiro Kamada
45	TEM Observation of Super low friction's extrem surface of earlier attride herdeseting	
46	I EIVI Observation of Super low Inction's extram surface of carbon nitride hardcoating	nirosni inoue

The 1st Nagoya U – U Michigan JUACEP Student Workshop on Mechanical Engineering and Science

March 12-13, 2012, at Univ. Michigan, Ann Arbor, MI

Program

Monday, March 12, 2012

9:00am-9:30am 9:30am-11:30am 1:00pm-3:00pm 3:00pm-5:30pm 6:00pm Welcome reception (Chrysler Lobby) Lab tours Lab tours Poster session (Tishman Hall, CSE Building) Banquet

Tuesday, March 13, 2012

9:00am-11:00am 1:30am- 5:00pm Toyota Tech Center visit Lab tours, Tour of North Campus

Organizers: Profs. N. Umehara, Y. Ju (Nagoya U) Prof. V. Sick (U Michigan)

Japan-US Advanced Collaborative Education Program (JUACEP) Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN Phone: +81-52-789-3113 Fax: +81-52-789-3111 Email: yito@mech.nagoya-u.ac.jp, tokuda@esi.nagoya-u.ac.jp

No.	Poster title	Presenter
	Wear particle analysis of DLC thin films focusing on structural changes and	Kenji Ohara
1	characteristics under oil lubrication	
2	blood coagulation on the tip	Yuta Ishikawa
3	The improvement of the properties of Si-CNxHy coating with Plasma CVD	Kazutaka Kitazume
4	Fundamental research for high friction and small wear brake pad	Miho Sumigama
5	The effect of inner blade speed for cutting sharpness of electric shaver	Naoya Naknishi
	The clarification of the relationship between transfer layer and friction coefficient of	Hidenori Nishimura
6	carbonaceous coating	
7	The development of droplet free CNx coating with Ion Beam Assited Deposition	Yuji Yagi
8	Numerical Study on Combustion Characteristics of Ultra-micro Combustor with Porous Chamber Wall	Bai Mingrui
9	Application of molecular tagging velocimetry to rarefied gas flow	Yamaguchi Akichika
10	A study on Human Avoidance Motion for Human-Robot coexistence system	Sunada Koji
	Basic Eye Part Collision Experiments against Sharp Mechanical Hazards for	Ito Soichiro
11	Severity Investigation	
	What appeals to human touch? Comprehensive Study of Textures that Give an	Nagano Hikaru
12	Incentive for Haptic Exploration	
	Noncontact nanometric positioning of probe tip for measurement of mechanical	Ito Keitaro
13	parameters of cell Occupant response in vehicle frontal crash	Itakura Takuva
14	Mechanical properties of carbon panotubes with one-dimensional intramolecular	Kawachi Masaki
15	iunction	
16	Road detection system outdoors –Image recognition with improved Flood Fill–	Maeda Yu
17	Parylene based catheter type flow sensor for detecting breathing characteristics	Yamazaki Yudai
18	EHL Analysis of CMP Process by Using ALE Finite Element Method	Asaba Masakazu
19	Study on Tool Damage in High-speed Ceramic Milling of Superalloys	Emmei Risa
20	On statistical properties of a turbulent boundary layer affected by the cylinder wake in a freestream	Hiruta Kosuke
	Measurements of High-Schmidt-Number Scalar Mixing Layers in Grid Turbulence	Hoshino Koichi
21	Turbulent Mixing in a Planar Liquid Jet with a Second-Order Chemical Reaction	Watanabe Tomoaki
22	Improvement of light detection of photodiode with local surface plasmon resonance	Ishiguro Atsushi
23	Effect of cyclic mechanical stretching on stem cell-to-tenocyte differentiation:	Suzuki Satoshi
24	Assessment by extracellular matrix expression levels and structure	
25	Fabrication of high density Au nanowires by template method	Teshima Hiromasa
	Measurement of electrical properties of cell surface by Microwave Atomic Force	Makino Takanori
26	Microscopy	Vachida Takahira
27	conductivity of doped GaAs wafers using microwayes	
21	Evaluation of mechanical property of thin films using ultrasonic waves induced by	Azuchi Kosuke
28	femtosecond pulse laser	
29	Development of fatigue crack-healing technique for metals	Kishi Tomoya
	Study of copper oxide nanowires generated by stressmigration at the selectivity	Kojima Naoki
30	metal deposits	
31	Development of evaluation technique for electric property using Microwave AFM	Nakashima Takahiro
22	Study on detection of delamination in unidirectional CFRP by microwave	ramaguchi Yuhei
52	What Is the Adequate Feature of a Robot for Children with Autism in Robot-	Jaervoung Lee
33	Assisted Therapy?	0
34	Sensory Perception by Electrical Stimulation	Miyako Banno
35	Simulation of Human Walking with Orthosis for Keeping Balance Upper Body	Yoshiho Uchiyama
36	Study of Operability Movement Steering System Using Lever Steering	Ryohei Sano
37	Analysis on Hand Motions in Activity of Daily Living	Ioshikatsu Tanase

Guests:	Professor Ju, Professor Umehara, Prof. Obinata, Associate Professor Kousaka, Dr. Ito, Dr. Tokuda, Dr. Ooe Nagoya University
Host:	Professor Volker Sick Faculty Advisor, International Programs in Engineering (734) 647-7129
Monday, March 12	<u>, 2012</u>
9:00am-9:30am	Welcome Reception Chrysler Lobby
9:30am-11:30am	Lab tours – including Wilson Student Tam Project Center
11:30am-1:00pm	Lunch – purchase own lunch and dine in the (reserved) Boulevard Room in Pierpont Commons
1:00pm-3:00pm	Lab tours
3:00pm-5:30pm	Poster Session Tishman Hall, Computer Science & Engineering Building (CSE)
6:00pm	Banquet – Holiday Inn Ann Arbor
Tuesday, March 13	<u>, 2012</u>
9:00am – 11:30am	Lab Tours

- 11:30am-12:30pmBreak for lunch1:00pm-2:00pmTour of North Campus
David Betts: 647-7132
- 3:00pm-5:00pm *Tentative:* Toyota Tech Center Visit 1555 Woodridge Avenue, Ann Arbor, MI Map: <u>http://www.manta.com/cmap/mm432pg/toyota-technical-center</u>

Wednesday, March 14, 2012

Free time while in the Detroit/Ann Arbor area:

<3> Summaries and Posters

(in order of presentations)

Analysis of DLC wear particles on oil lubrication

Kenji Ohara ohara@ume.mech.nagoya-u.ac.jp Noritsugu Umehara ume@mech.nagoya-u.ac.jp Takayuki Tokoroyama tokoyama@ume.mech.nagoya-u.ac.jp Nagoya University, Department of Mechanical Science and Engineering Furo-cho, Chikusa-ku, Nagoya, 464-8603 Japan

Abstract

In this study, the diagnosis of the wear on the DLC (diamond-like carbon) film was enabled by analyzing I_D/I_G ratio of DLC wear particles. DLC film is expected as low friction and high wear resistance material. And, it is reported that the crystallographic structure on the surface is changed by the tribo-chemical reaction when the friction occurs. Then, authors established the technique for catching the structural change of the wear particles on the friction surface. This technique enabled the method of machine maintenance as well as "Oil analysis".

In this report, authors firstly characterized shape and color of DLC wear particles by scanning electron microscopy and optical microscope. (Fig.1)

Secondly, they evaluated average thickness of DLC wear particles by specific wear rate and area of wear particles on membrane filter (2).

As a result, increasing average thickness of DLC wear particles caused structural change of DLC wear particle (Fig3).

Fig. 1 (a) DLC wear particle obtained at 25 $^{\circ}$ C frictional test by OM (Optical Microscope), (b) Enlargement image of (a) by SEM, (c) DLC wear particles obtained at 80 $^{\circ}$ C, (d) Enlargement of (c), (e) DLC wear particles obtained 120 $^{\circ}$ C and (f) Enlargement of (e) 0.40 DLC : Ion plating (Ra = 0.03 µm) 0.35 g vs. DLC disk (Ra = 0.03 µm) Normalload W:10N 0.30 dethedones by ne oil (100 cSt) ig speed I⁺: 125.7 m 0.25 0.20 0.15 0.10 Number of 0.05 0.00 9 20 40 60 80 100 120 140 160 180 Old temperature 7, °C Fig. 2 The relationship between average particle thickness and temperature DEC Ion plating (Ra = 0.03 n DLC disk (Ra = 0.03 µm) Normational W:10N 125.7+ 0.2 40 80 80 100 120 140 160 180 Oilt Fig. 3 The relationship between I_D/I_G ratio and temperature

Biography

Kenji Ohara received the Bachelor degree in Mechanical engineer from Nagoya University in 2011 He belongs to master's course of Nagoya University, focusing on the studies of DLC for engine bearing.

Analysis of DLC wear particles on oil lubrication

Kenji Ohara⁽¹⁾ Umehara Noritsugu⁽¹⁾ Takayuki Tokoroyama ⁽¹⁾

Purpose

Lubricating oil diagnostic technology, such as the ferrography method, is mentioned as the mechanical preservation method. And it is used for wear state prediction. So, in this research, the wear particles which occurred from the DLC film were separated out of lubricating oil, and the parameter which can detect unusual wear of a DLC film was proposed from analysis of DLC wear particles.

Fig. 1 Model of wear

Experiment

DLC vs.DLC in oil Changing oil temperature

Extraction of the wear particles contained in lubricating oil

The crystal structure of DLC wear particles is analyzed from the I_D/I_G ratio of Raman spectroscopic analysis.

Results

Fig.2 DLC wear particles are collected Fig.3 Fig.4 I_D/I_G of DLC wear particles decrease with translating sever wear from mild wear

(1) Nagoya University

Conclusion

By analyzing DLC wear particles, the phenomenon similar to changes of the wear form of a metal called the changes to the mechanical wear of a bulk layer from wear by the removal of a structural change layer which was not clarified became clear in the analysis only by the side of a DLC film conventionally.

Basic Research of a Chip Cooling System Required for a Blood Coagulation Adhesion Control Radio Knife

Yuta ISHIKAWA ishikawa@ume.mech.nagoya-u.ac.jp Noritsugu UMEHARA ume@mech.nagoya-u.ac.jp Hiroyuki KOUSAKA kousaka@mech.nagoya-u.ac.jp Takayuki TOKOROYAMA tokoroyama@mech.nagoya-u.ac.jp School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

There is a problem of the protein in blood carrying out heat denaturation at the tip of a radio knife, solidifying at it, and stopping discharging at it in a surgical operation, and since it is used shaving the blood which carried out solidification adhesion at the tip of a radio knife, a remedy is desired at the operation spot.

It was reported that blood coagulation adhesion can be controlled by cooling a radio knife tip, and it aims at the development and utilization of a radio knife tip which controlled protein solidification adhesion in this research. However, the former cooling system used cooling water circuit system which prevents the operator's action at the surgical scene. That's why, it is necessary to apply other cooling system.

Then, we tried to develop a cooled type radio knife using the Peltier device as the technique of newly cooling knife tip. Figure 1 shows the schematic image of newly radio knife using Peltier device. It makes possible to not use cooling water circuit. The ability of this newly radio knife was assured by coagulation tests.

The Fig. 2 shows the relationship between applying voltage for Peltier device to cool the tip and temperature of the tip surface.

It was clear that if the applying voltage was larger than 0.7 V, the tip surface was not covered by blood coagulation. The minimum temperature was generated by applying voltage at about 2 V. This result indicated that cooling system by Peltier device makes possible to prevent coagulation on it.

Fig. 1 The schematic image of newly radio knife tip with Peltier device

Fig. 2 The relationship between inner blade and average pulling force

Biography

Yuta Ishikawa entered in Nagoya University in 2008 and will graduate in 2012.

Basic research of a chip cooling system required for a blood coagulation adhesion control radio knife

Yuta Ishikawa

Noritsugu Umehara

Takayuki Tokoroyama, Nagoya University March, 2012

Background

The radio knife is one of a operating tool for surgical scene. It can prevent bleeding when operator cut human body and etc. Generaly, this radio knife has coaguration problem which involves no discharge and finally the knife can not cut (see Fig.1). In a previous research, we investigated that coaguration of blood did not take place when the inside of radio knife tip cooled by circulation water. However, the technique of using circulation water has disadvantages such as unconfortable usage by conecting water circuit and radio knife tip should have water flow port at the inside. Therfore, it is necessary to develop new cooling system without water circuit. (a)

Purpose

The trial production of the cooled type radio knife which introduced the Peltier device simplified by a cooling system without water-circuit

Discussion

The cooling side of a Peltier device must be kept at 10 °C or less, it was clear that, when the impressed electromotive force to a Peltier device was higher than 0.7V, very low adhesion was generated.

Conclusion

The radio knife tip with peltier device generated very low adhesion between coaguration blood and tip surface when applied voltage was higher than 0.7V.

The improvement of the properties of Si-CNxHy coating with Plasma CVD

Kazutaka KITAZUME <u>i.kitadume@ume.mech.nagoya-u.ac.jp</u> Hiroyuki KOUSAKA <u>kousaka@mech.nagoya-u.ac.jp</u> Noritugu UMEHARA <u>ume@mech.nagoya-u.ac.jp</u> Takayuki TOKOROYAMA <u>tokoroyama@mech.nagoya-u.ac.jp</u> School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

CNx (Carbon nitride) coating is one of the attractive materials that satisfy both relatively high hardness and low friction. It was reported that if CNx coating slid against Si_3N_4 ball, friction coefficient reduces down to lower than 0.01[1].

Carbonaceous coatings including CNx coating can be synthesized by PECVD (Plasma Enhanced Chemical Vapor Deposition) method. PECVD is more suitable for 3 dimensional substrate rather than PVD (Physical Vapor Deposition) method because this coating method use precursor gas and generating plasma makes possible to coat for 3 dimensions. In this research, we synthesize Si-CNxHy coating by using a PECVD apparatus as shown in Fig.1 with

Ar, CH4, N2 and TMS (Tetramethylsilane) employed as precursor gases. In this chamber, high density plasma is generated along the quarts tube by 2.45 GHz microwaves injected through the bottom of the chamber[2].

Si-CNxHy coatings were deposited on stainless-steel (SUS304, JIS) substrates for 20 min at a gas pressure of 40 Pa, the microwave peak power was 900 W, and gas flow rates of 10, 2, 15, 0.6 sccm in Ar, TMS, CH₄, N₂ respectively. The microwave was applied pulsed manner where the duty ratio was controlled in 40 %. The different 4 Si-CNxHy were synthesized at substrate bias voltages of -300 V, -400 V, -500 V, and -600 V. The temperature of substrate at deposit was 270 °C.

The relationship between bias voltage applied to substrate and nano indentation hardness is shown in Fig. 2. The hardness of Si-CNxHy coating was around 20 GPa when the bias voltage was higher than -300 V. Suggesting that ion enhanced ion bombardment by increasing bias voltage caused higher hardness of Si-CNxHy.

Fig.2 The relationship between bias voltage and nano indentation hardness of Si-CNxHy coating

References

[1] Umehara, N., Kato, K., Sato, T., Proceedings of the International Conference on Metallurgical Coatings and Thin Films, (1998), p.151.

[2] H. Kousaka, S. Kishine, N. Umehara, IEEE Conf. Proc. Micro-NanoMechatronics and Human Science,(2007),490-493

Biography

Kazutaka Ktazume entered school of Engineering, Nagoya University in 2008, and will graduate in 2012

The improvement of the properties of Si-CNxHy coating with Plasma CVD K.Kitazume, H.Kousaka, N.Umehara, T.Tokoroyama Nagoya U

Nagoya University March 2012

PURPOSE

Carbon nitride (CNx) coating is an attractive material that satisfy both relatively high hardness and ultralow friction coefficient against Si₃N ball in dry nitrogen (<0.01)[1]. In this work, investigating the effect of substrate bias increase on the hardness and friction property of Si-CNxHy coating (Fig.1) by plasma -enhanced chemical vapor deposition (PECVD).

EXPERIMENT

The schematic view of PECVD apparatus is shown in Fig. 2 Film deposition conditions are shown in Table 1.

In order to clarify the friction characteristic in the oil of a Si-CNxHy coating, the friction test was done against bearing-steel balls (SUJ2, JIS) in poly- α -olefin (PAO). The schematic view of the friction tester used by this research is shown in Fig. 3 The weight of 102.2 g was used for vertical, and it examined by applying 1.0 N load. In friction, the substrate side rotates at the rate of 200 rpm (sliding speed 42 mm/s).

Table.1 Experimental conditions for depositions

- F				
Total pressure (Pa)		40		
Substrate distance d	Substrate distance <i>d</i> (mm)			
Substrate temperatu	250-300			
DC bias voltage (V)		300 - 600		
(Pulse 10 kHz)	(Pulse 10 kHz) Ar-cleaning time (min)			
Ar-cleaning time (n				
Coating time (min)	Coating time (min)			
Gas flow ration	CH ₄	15		
(sccm)	N ₂	0.6		
	Ar	10		
	TMS[Si(CH ₃) ₄]			
Microwave power	Average power	300		
(W)	Max power	900		
(Pulse 500 Hz)				

RESULTS

A result of Si-CNxHy film indentation hardness when substrate bias increase at deposition is shown Fig.4. Si-CNxHy hardness was set to 19GPa by raising bias to -400V, and even if raised after it, there was no rise of film hardness. Fig.5,Fig.6 show the friction coefficient of the hard Si-CNxHy (bias -600V) and softer Si-CNxHy (bias -300V).

Fig.4 The relationship between bias voltage and nano indentation hardness of Si-CNxHy coating

DISCUSSION

The result of Raman spectroscopic analysis is shown Fig.7. It is said that more inclination sudden, the more hydrogen contents[3].

That is, Si-CNxHy hardness rises because the hydrogen content was less, and it is thought that it led to reduction of the coefficient of friction in the oil[4].

Si-CNxHy deposited at -300V and SUJ2

 The hardness of Si-CNxHy was increased from 10GPa at a substrate bias voltage of -300V to more than 19GPa at a substrate bias voltage of -600V.

 The friction coefficient between Si-CNxHy deposited at -600V and SUJ2 in oil lower than substrate bias -300V.

(1) Umehara, N., Kato, K., Sato, T., Proceedings of the International Conference on Metallurgical Coatings and Thin Films, (1998), p.151. Human Science,(2007), 490-493
[3] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson, Diamond & Related Materials 14 (2005) 1098–1102

[2] H. Kousaka, S. Kishine, N. Umehara, IEEE Conf. Proc. Micro-NanoMechatronics and [4] Y.Yasuda, M.Kano, T.Mabuchi and S.Abou, SAE Paper, 2003-01-1101(2003)

Development of high friction and low aggression brake pad for next-generation automobile

Miho Sumigama

sumigama@ume.mech.nagoya-u.ac.jp

Noritugu Umehara

ume@mech.nagoya-u.ac.jp

Hiroyuki Kousaka

kousaka@mech.nagoya-u.ac.jp

Takayuki Tokoroyama

tokoroyama@mech.nagoya-u.ac.jp

6

Faculty of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan

Abstract

These days the low wear and high friction brake pad is needed from the viewpoint of environmental problems. Containing much kind of materials such as resin, abrasive, fiber, solid lubricant and so on, the brake pad is so complicated that we cannot design it theoretically. So, we simulated the brake pad model using only resin and abrasive, and suggested the way to design the low wear and high friction brake pad theoretically.

First of all, we investigated the relationship between the property of abrasive in the brake pad model: shape (ball, circular cone, pyramid), size, density and apex cone angle of the abrasive, and friction coefficient and wear volume using the abrasive theory. For example Fig. 1 shows the relationship between the apex cone angle of the abrasive and friction coefficient.

Circular cone µ

80

90

Corner first µ

-Face first µ

Next, in order to validate the brake pad model we carried out the scratch test with a diamond indenter (Shape: ball + circular cone). Fig. 2 shows the result of the scratch test and the theoretical value by the model.

From the scratch test we obtained the result that the model we made was almost correct. So we can use this model and will find the optimum abrasive condition.

Biography

Miho Sumigama entranced Faculty of Engineering of Nagoya Normal load W. N University in 2008, and will graduate in 2012, and will entrance Fig. 2 The result of the scratch test and Graduated School of Faculty of Engineering of Nagoya theoretical value University.

Conclusion and future plan

From the scratch test we obtained the result that the brake pad model was almost \sim correct. So we can use this model and will find the optimum abrasive condition. For example we think the abrasive whose A_n - A_h relationship is not linier for candidate, because wear volume was proportional to friction coefficient.

Relationship between Speed of Blade and Sharpness of Shaver

Naoya NAKANISHI nakanishi@mech.nagoya-u.ac.jp Noritsugu UMEHARA ume@mech.nagoya-u.ac.jp Hiroyuki KOUSAKA kousaka@mech.nagoya-u.ac.jp Takayuki TOKOROYAMA tokoroyama@mech.nagoya-u.ac.jp

School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Electric shaver is roughly divided into rotary and round trip type. The speed of the round trip type inner blades is not constant; it changes from 0 to the highest speed of 1.8 m/s. On the other hand, the speed of rotary type's inner blades is always constant such as 1.2 m/s. The aim of this research is to clarify the effect of inner blade speed for cutting sharpness of electric shaver.

The schematic image of apparatus to measure pulling force is shown in Fig. 1. The electric shaver was set on the fix arm and it is against the load-cell with an artificial hair glued on the tip. The cutting sharpness was evaluated by the pulling force when inner blade cut a hair. The hair is caught between the inner and outer blades and sheared in a scissor action. The force of this sharing action is thought to be the pulling force.

The relationship between inner blade speed and average pulling force is shown in Fig. 2. It was clear that the pulling force decreased with increasing inner blade speed.

Cross sectional SEM image of after cutting an artificial hair is shown in Fig. 3. The inner blade cut the heir toward one direction. The cutting process is assumed that inner blade penetrated into artificial hair with plastic deformation, then, it cut the hair by scissor action. This scissor action generated pulling force.

Fig.1 The schematic image of pulling force measuring apparatus

Fig. 2 The relationship between inner blade and average pulling force

Fig. 3 Cross-sectional SEM image of the artificial hair cut by rotary type shaver

Biography Naoya Nakanishi will graduate Nagoya University in 2012

Relationship between Speed of Blade and Sharpness of Shaver

N. Nakanishi N. Umehara T. Tokoroyama and H. kousaka

Round trip

Nagoya University March, 2012

PURPOSE

Fig.1 Rotary type shaver

Fig.2 Round trip type shaver

Electric shaver is roughly divided into rotary (Fig. 1) and The schematic image of apparatus to measure pulling force is round trip type (Fig. 2), depending on the form of the inner blade of the electric shaver. The speed of the round trip type inner blades is not constant; it changes from 0 to the highest speed of 1.8 m/s. On the other hand, the speed of rotary type's inner blades is always constant such as 1.2 m/s,(Fig.3) The aim of this research is to clarify the effect of inner blade speed for cutting sharpness of electric shaver.

EXPERIMENT

shown in Fig. 4 and 5. The electric shaver was set on the fix arm and it is against the load-cell with an artificial hair glued on the tip. Artficial hair oad-cell The arm for shaver to be fixe Ē

RESULTS

The relationship between inner blade speed and average pulling force is shown in Fig. 6. It was clear that the pulling force decreased with increasing inner blade speed. Cross sectional SEM image of after cutting an artificial hair is shown in Fig. 7 and microscopic image is done in Fig 8. The inner blade cut the heir toward one direction. The cutting process is assumed that inner blade penetrated into artificial hair with plastic deformation, then, it cut the hair by scissor action. This scissor action generated pulling force. Figure 9 shows the capture of high speed camera's video and pulling force with measuring time when shaver cut a hair.

Fig.6 The relationship between inner blade speed and average pulling force

Fig. 7 Cross-sectional SEM image of the artificial hair cut by rotary type shaver

Fig. 8 Cross-sectional microscopic image of the artificial hair cut by rotary type shave

CONCLUSION

It was clear that the pulling force decreased with increasing inner blade speed. Measuring pulling force of artificial hair is a simple and effective method to evaluate the cutting ability of an electric shaver.

The clarification of the relationship between transfer layer and friction coefficient of carbonaceous coating

Hidenori NISHIMURA nishimura@ume.mech.nagoya-u.ac.jp Noritsugu UMEHARA ume@mech.nagoya-u.ac.jp Hiroyuki KOUSAKA kousaka@mech.nagoya-u.ac.jp Takayuki TOKOROYAMA tokoroyama@mech.nagoya-u.ac.jp School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, JAPAN

Abstract

The transfer layer built on an in front of the sapphire hemisphere which was mating material of carbonaceous coating such as DLC and CNx during friction (Fig. 1). It is one of the necessary conditions to appear an ultra-low friction coefficient (μ <0.01). We revealed a structure and mechanical properties of transfer layer which showed ultra-low friction coefficient.

We measured the transfer layer thickness and the contact area. For the contact area, we suggested a new measurement method. We binarized the friction surface image taking by optical microscope through the sapphire hemisphere (including transfer layer), and we defined contact area (Fig. 2). Also, we measured the transfer layer nano-indentation hardness and Raman spectroscopy analysis as the mechanical properties of transfer layer.

The Fig. 3 shows the friction coefficient reduced despite the contact area increased, it was assumed that the shear strength of transfer layer was decreased. Since left of the blue area of Fig. 3 shows initial friction zone, we considered that graphitization of the transfer layer had been taking place at the period of right zone of the blue area, and reduced friction coefficient.

Also, in the red area of Fig. 3, the friction coefficient and the contact area increased. In this area, we suggested to stop decreasing the shear strength by finishing the graphitization of the transfer layer. So the friction coefficient was restricted by the contact area and the transfer layer thickness in the red area.

Fig. 3 The relationship between the contact area and the friction coefficient

Biography

Hidenori Nishimura entered School of Engineering of Nagoya University in 2008, and will graduate in 2012.

The clarification of the relationship between transfer layer and friction coefficient of carbonaceous coating

Hidenori Nishimura Noritsugu Umehara Hiroyuki Kousaka Takayuki Tokoroyama Nagoya University March, 2012

layer thickness changed (Fig. 12) \rightarrow the friction coefficient

Conclusion

0.0

2000

4000

Fig. 12 The relationship between transfer layer thickness and friction coefficient

6000

10000

We suggested the new method to measure the contact area.
There was the optimum value of the contact area that the friction coefficient was the smallest. And we proposed the friction mechanism before and after showed ultra-low friction coefficient at that time.

Clarification of mechanism and Control techniques about droplets of the CNx coating by ion beam assisted deposition

Yuji Yagi yagi@ume.mech.nagoya-u.ac.jp Noritsugu UMEHARA ume@mech.nagoya-u.ac.jp Hiroyuki KOUSAKA kousaka@mech.nagoya-u.ac.jp Takayuki TOKOROYAMA tokoroyama@mech.nagoya-u.ac.jp School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

It has been reported that the carbon nitride (CNx) coating was the super-low friction in which friction coefficient was less than 0.01, and it attracts attention as a wear resistance and low friction material. When forming a CNx coating with Ion Beam Assisted Deposition (IBAD) methed as shown in Fig. 1, it turns out that the small asperities called droplets to the CNx coating surface with thick-film-izing is generated, and it generates high friction, but neither the control method of droplets nor the generation mechanism is clear. So, in this research, the optimal coating conditions for controlling droplets are clarified by paying attention to the energy of an electron beam and the form of a carbon target.

The value of the filament current which adjusts electron bear intensity was formed as a coating to 300 nm thickness as five leve which were different to 0.4~0.6 A. The relation of the average height of droplets and the filament current density are shown in Fig. 2. As result, It was clear that the average height of the droplet became low when filament current density was made small.

The carbon target was processed like the form which evaporates by an electron beam. Although it was usually the filament current $0.4 \sim 0.6$ A in CNx coating of thickness 1000 nm, it was able to be carried out in the filament current value $0.25 \sim 0.30$ A by carbon target processing. The AFM image of these two CNx coating is shown in Fig. 4. As a result, usual droplets average height was H = 0.92μ m in the thick film, but it was able to control by processing a carbon target to droplets average height H = 0.52μ m.

Fig. 1 Ion beam assisted deposition device

Fig. 2 The relation of the average height of droplets and the filament current density

Fig3. AFM images (a) Usually and (b) Target processing

Biography

Yuji Yagi entered School of Engineering of Nagoya University in 2008, and will graduate in 2012.

Clarification of mechanism and Control techniques about droplets of the CNx coating by Ion Beam Assisted Deposition

Y. Yagi, N. Umehara, T. Tkoroyama and H. kousaka Nagoya University March 2012

PURPOSE

EXPERIMENT

Table1. Droplets height, area ratio and friction coefficient

	Normal target	Processed target
Average droplets height H (µm)	0.92	0.52
Droplets area ratio R (%)	2.4~3.2	1.6~1.9
Average friction coefficient	0.075	0.045

CONCLUSION

4

6

Filament current density D, A/m²s Fig.4 The relation of the average height of droplets and the filament current density

0.2

0.0 0

It turned out that the average height of droplets decreased with decreasing current density. In CNx coating of 1000nm thickness, the droplets decreased and the average friction coefficient was μ =0.045 by processing a carbon target.

12

Numerical Study on Combustion Characteristics of Ultra-micro Combustor with Porous Chamber Wall

Mingrui BAI

bai@eess.mech.nagoya-u.ac.jp

Hiroshi Yamashita

yamashita@mech.nagoya-u.ac.jp

Graduate School of Engineering, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Daiqing ZHAO

zhaodq@ms.giec.ac.cn

GuangZhou Institute of Energy Conversion, CAS

No.2 Wushan Nengyuan Street, Tianhe District, Guangzhou City 510620, China

Abstract

In recent years, lots of micro power systems have been studied because of their high energy density. However, as small as their size will be, the heat loss from chamber wall becomes very remarkable. Aimed at that problem, the porous wall has been used as combustor inlet to recirculate combustion heat with inflow premixed gas.

In our study, we have investigated such an ultra-micro combustor with porous chamber wall by using our numerical calculation code (Fig.1). Furthermore, through altering computational conditions, which are preheating temperature T_0 , inlet velocity U_0 and equivalence ratio Φ_0 , we've elucidated internal combustion characteristics which could not obtain from experiments.

As a result, four types of combustion, which are steady-state, blowing-off, pulsating and extinction, have been observed (Fig.2). The combustible region becomes narrower when we decrease the preheating temperature. Moreover, combustion load becomes higher when we increase the inlet velocity and fuel equivalence ratio, and combustion efficiency becomes higher, reaches a maximum, and then decreases, when we increase the inlet velocity.

Fig.1 Schematic of analytical model

Fig.2 Combustion Aspect ($T_0=700$ K) (Left: steady-state; Right: blowing-off)

Biography

Mingrui BAI is a first-year student of master course in Graduate School of Engineering, Nagoya University. She is preparing to make a presentation of her study at the Japan Society of Mechanical Engineers, Tokai Branch in March, 2012.

Numerical Study on Combustion Characteristics of Ultramicro Combustor with Porous Chamber Wall

Mingrui BAI, Hiroshi YAMASHITA Nagoya University Daiqing ZHAO Guangzhou Institute of Energy Conversion of CAS

Objectives

With the advantage of high energy density, lots of micro power systems have been studied in recent years. However, as small as their size will be, the heat loss from chamber wall becomes very remarkable. Aimed at that problem, we used the porous wall as combustor inlet to recirculate combustion heat with inflow premixed gas. And, with altering the computational conditions, we examined internal combustion characteristics which could not obtain from experiments.

Computational Conditions

 The flow rate boundary condition of Premixed gas and Secondary air

 $Q_{M}: Q_{S} = 1: 0.75$ (fixed)

U₀: 0.112 m/s~2.77 m/s (premixed gas)

- The temperature and equivalence ratio of premixed gas
- Equivalence ratio Φ_0 : 0.6 ~ 1.0 Preheating temperature T_0 : 400 K ~700 K • The temperature of chamber wall
 - Restricted temperature $\mathbf{T}_{\mathbf{W}}$: 1000 K

Results

1. Combustion aspect

Through altering the T_0 , U_0 and Φ_0 , we confirmed four types of combustion, which are steady-state (St), blowing-off (Bl), pulsating (Pu) and extinction (Ex) (Fig.3). We can only observe the pulsating combustion in slow inlet velocity for the reason of heat loss in chamber wall and burning velocity.

2. Flammable regions

With decreasing the preheating temperature T_0 , we found that flammable limits is becoming smaller and smaller (Table 1). This can be explained by that preheated premixed gas can promote combustion.

Table 1 Flammable regions

^{3.} **Combustion efficiency and Combustion load** From the calculation data, it is cleared that when we increase the inlet velocity, combustion load becomes higher, and combustion efficiency firstly becomes higher, reaches a maximum, and then decreases at each preheating temperature (Figs.4 and 5).

Conclusions

- With changing T₀, U₀ and Φ₀, four types of combustion, steady-state, blowing-off, pulsating and extinction have been observed. Moreover, when we decrease preheating temperature, the flammable regions become narrower.
 The combustion load is becoming higher when we increase the inlet velocity. However, combustion officiency is
- The combustion load is becoming higher when we increase the inlet velocity. However, combustion efficiency is firstly becoming higher, reaches a maximum, and then decrease at each preheating temperature.

Application of molecular tagging velocimetry to rarefied gas flow

Akichika Yamaguchi yamaguchi.akichika@b.mbox.nagoya-u.ac.jp Hiroki Yamaguchi hiroki@nagoya-u.jp Tomohide Niimi niimi@mech.nagoya-u.ac.jp Graduate School of Engineering Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Knudsen number ($Kn = \lambda/L$) is a non-dimensional parameter representing the rarefield degree of gas flows, where λ is the mean free path and L is the characteristic length of a flow field. The flow whose Knudsen number is beyond 0.01 is called "high Knudsen number flow": for instance, rarefield gas flows (λ : large) and micro-/nano-flows (L: small). Recently, not only for detailed investigation but also for verifying numerical simulations on high Knudsen number flows, the development of new techniques for velocity field measurement is required.

There are many velocimetry techniques by visualization of a flow field: such as, PIV (Particle Image Velocimetry), PSV (Particle Streak Velocimetry) and MTV (Molecular Tagging Velocimetry). PIV and PSV are very common and widely used in liquid flows, which needs seeding of particles into the flow. Therefore, especially in gaseous flows, these techniques have the problems of speed separation from flow and damage or adhesion to walls. In contrast, MTV is molecular based technique, where molecules in the flow are tagged and tagged molecules are visualized, and the displacement of the visualized molecules during a small time duration leads to the flow velocity. This technique is free from the above mentioned problems. Therefore, MTV is best suited to analyze velocity field in high Knudsen number flow.

A supersonic free jet was employed as a typical rarefied gas flow to demonstrate MTV technique in high Knudsen number flow. For the visualization of tagged molecules,

Fig.1 Pseudo color LIF image of super sonic free jet

Fig.2 Typical example of visualized super sonic free jet with certain time duration

the laser induced florescence (LIF) was employed. As a result, velocity on the central axis of a super sonic free jet with pressure ratio of 2000 was calculated as 767 ± 21 m/s. Compared with the theoretical value of 751.0m/s - 754.7m/s, experimental result indicated good agreement.

Biography

Akichika Yamaguchi received the Bachelor's degree in Engineering from Nagoya University. He is currently a graduate school student in Nagoya University, focusing on the studies of analyzing high Knudsen number flows.

Application of molecular tagging velocimetry to rarefied gas flow

Akichika Yamaguchi, Hiroki Yamaguchi, Kojiro Kawabe, Yuki Nakashima, Yu Matsuda, Tomohide Niimi

Background

Knudsen number : represents the rarefied gas flow

 $Kn = \frac{\lambda}{L}$

 $\begin{cases} \lambda : \text{mean free pass} \\ L : \text{characteristic length} \end{cases}$

Rarefied gas flow

high Knudsen number flow (λ : large)

It cannot be dealt with as continuum flow

Precise experimental data are required

Technique

Optical measurements

LDV (Laser Doppler Velocimetry)

Limited to 1-D measurement

PIV (Particle Image Velocimetry) **PSV** (Particle Streak Velocimetry)

> In gaseous flows, have the problems of • speed separation from flow

damage or adhesion to walls

MTV (Molecular Tagging Velocimetry)

After tagging molecules in a flow field, velocity is measured by tracking the tagged molecules

Target

Not only for detailed investigation but also for verifying numerical simulations on high Knudsen number flows, the development of new techniques for velocity field measurement is required.

We aim to develop a technique to measure velocity in rarefied gas flow field

Equipment

- Result

Time delayed images in a supersonic free jet $t = 1 \mu s$ $t = 2 \mu s$

Displacement is calculated by fitting luminescent intensity distributions by Gaussian functions

A Study on Human Avoidance Motion for Human-Robot Coexistence Systems

Koji SUNADA sunada.koji@e.mbox.nagoya-u.ac.jp Yoji YAMADA yamada-yoji@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

At production site, a human-robot coexistence system is desired due to its flexibility and efficiency. To realize such system, the worker's risk needs to be estimated exactly with taking human avoidance motion

into consideration. We have investigated human avoidability of harm to eyes in a typical human-robot coexistence system. The result will contribute to reasonably estimating avoidability, which currently tends to be estimated intuitively by assessors.

We have conducted psychological experiments for investigating human avoidance action characteristics. Fig.1 shows the situation of the psychological experiments. As the result, it was suggested that the shorter the initial distance between the eyes of a participant and the end-effector tip of the robot was, the shorter avoidance reaction time was. The end-effector motions were set not to touch the participants for securing safety.

To assess that human avoidance motion contributed human avoidability, we extrapolated simulation experiments in hazardous situations from the experimental data as shown in Fig.2, and termed such simulation "extrapolating simulation". We supposed that the modification of end effector motions did not affect human avoidance motion significantly. In the simulation, a human model's motion is same as participant's motion observed in the psychological experiment whole time. On the other hand, an end effector

Fig.1 Psychological experiment

Fig.2 Extrapolating simulation

Fig.3 Human-robot coexistence conditions determined by the simulation

accelerates to the human model in the same motion as that in the psychological experiments, and then moves in hazardous modified motion. In this study, we assumed that the end effector moved straight to a human model's eye at uniform speed.

Eye–end effector collision simulations were carried out with various speeds of the end effectors in uniform motion. As the result, the motion range of the end effectors for securing safety was determined in each of the speeds (Fig.3). For example, when the initial distance between a human eye and an end-effector tip was about 495 mm and the uniform speed of the end effector was 950 mm/s, the human's avoidance distance was about 25 mm according to the simulations. This difference of 25 [mm] would contribute the increase of the possibility of avoiding or limiting harm. This result indicates quantitatively human avoidability of harm to eyes in the typical human-robot coexistence system.

Biography

Koji Sunada got an engineering degree from Nagoya University in 2011. He joins Academy for Safety Intelligence, which proposes a new interdisciplinary research field schematized as "Safety Intelligence". He is working on constructing innovative human-support machines for sustainable society.

A Study on Human Avoidance Motion for Human-Robot Coexistence Systems

in March, 2012

Koji SUNADA Yoji YAMADA

Objective

The risk of a robot is estimated without taking human avoidance motion into consideration. This study investigates human avoidability of harm to eyes in a typical human-robot coexistence system. The result will contribute to estimating avoidability, which currently tends to be estimated intuitively by assessors.

Psychological Experiment

Experiments in safety situations

Supposition

An end-effector tip of a robot at a production site suddenly approaches the eyes of a worker sitting in front of the robot.

Note

The end-effector motions were set **not** to touch the participants for securing safety.

How much does the human avoidance motion contribute human avoidability?

Experiments in hazardous situations

Assumption

Modification of end-effector motions does not affect human avoidance motions significantly.

Human model Observed motion whole time End-effector model

[During acceleration] Observed motion [After] Modified hazardous motion We assumed that an end effector moved

straight to human model's eye at uniform speed (Fig.1).

Result

Consideration of human avoidance motion makes a few centimeter margin (Fig.2).

Discussion

- The motion range of the end effectors for securing safety could be determined based on Fig.2.
- Human avoidance motion would contribute the increase of the possibility of avoiding or limiting harm to eyes.

Conclusion

We showed quantitatively human avoidability taking human avoidance motion into consideration in the typical human-robot coexistence system.

Basic Eye Part Collision Experiments against Sharp Mechanical Hazards for Severity Investigation

Soichiro ITO

ito.soichiro@a.mbox.nagoya-u.ac.jp Yoji YAMADA

yamada-yoji@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

At production sites, a human-robot cooperative working system is desired. To realize such system, the worker's risk needs to be estimated exactly.

We assume that a sharp end effector of a robot approaches the eye of a human in a human-robot coexistence system. The human will perform avoidance/mitigation action against the approaching end effector. The aim of this study is to investigate how change of collision condition due to human avoidance/mitigation action influences the severity.

We have conducted basic eye part collision experiments taking human avoidance/mitigation actions into consideration (Fig.1). In the experiments, three conditions (open/close eyelid, collision positions, and collision angles) were changed. As the result, it was confirmed that each of the conditions to brings differences to severity (Fig. 2). For example, the severity was estimated low by closing eyelid.

Change of collision condition due to human avoidance/mitigation action will enable the human to avoid serious injury. Although possibility of avoidance/mitigation was not taken into consideration in past eye part collision experiments, we consider that it is indispensable to risk estimation.

Fig.1 Eye part collision experiments

	0 [deg]	30 [deg]	45 [deg]
Open eyelid	×	Δ	Δ
Close eyelid	×	Δ	0

(a) Collision with cornea

	0 [deg]	30 [deg]	45 [deg]
Open eyelid	Δ	0	0
Close eyelid	0	0	0

(b) Collision with sclera

- \bigcirc : No injury could be confirmed
- \triangle : Eyeball surface got injured
- \times : End effector punched eyeball, and vitreous got out

Fig.2 Result of collision experiment

Biography

Soichiro Ito received the bachelor degree in engineering from Nagoya University in 2011. He is currently in the first year of the master's program in Nagoya University, focusing on the studies of risk estimation in a human-robot coexistence system.

Basic Eye Part Collision Experiments against Sharp Mechanical Hazards for Severity Investigation

Soichiro Ito Yoji Yamada

Nagoya Univ., Japan

Background

Human-robot cooperative working system

Assumed situation

A sharp end-effector tip of a robot suddenly attacks the eyes of a worker.

SA : Succeed in avoiding, FA : Fail in avoiding LC : Loose condition, SC : Severe condition

- · Human avoidance/mitigation action will change collision conditions.
- · Doesn't it necessarily result in serious injury depending on collision conditions?

The aim of this study is to investigate how change of collision conditions due to human avoidance/mitigation action influences the severity.

Experiment

End effector collided with dummy eye.

Collision conditions (collision angle, collision position, open/close eyelid) were changed.

The severity of eyeball was investigated.

Collision conditions

			· · · · · · · · · · · · · · · · · · ·
	N 11		
Operation method		Robot's right arm was operated in a straight line	\times
Collision speed		About 280 mm/s	
Collision angle		 Normal direction (0 [deg]) 30 [deg] from normal direction 45 [deg] from normal direction 	
Collision position		1) Cornea ② Sclera	
Eyelid	1 Ope 2 Clos	en eyelid se eyelid (Artificial eyelid)	Eyend
Soft tissue	• 1 DC • Com	F in the direction of optical axis pression springs(Spring constant : 19.9 N/mm)	Close eyelid

Result

Change of collision conditions due to human avoidance/mitigation action will enable the human to avoid serious injury.

What Appeals to Human Touch? - Comprehensive Study of Textures that Give an Incentive for Haptic Exploration -

Hikaru NAGANO nagano.hikaru@h.mbox.nagoya-u.ac.jp Shogo OKAMOTO okamoto-shogo@mech.nagoya-u.ac.jp Yoji YAMADA yamada-yoji@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Background: Some textures and materials appeal to our touch in daily life. What makes us intuitively feel like touching them? Haptic invitation for such textures has rarely been investigated.

Objective: The present report specifies the relationships between the physical and sensory properties of textures and the degrees of haptic inivitation.

Method: We used 24 artificial clay textures that were varied along four physical factors as shown in Fig.1. We specified the sensory factors of textures through a sensory evaluation and a factor analysis and then quantified the degrees of affinity for these textures using a normalized-rank approach. Multiple regression analyses were performed to investigate the relationships between the degrees of affinity for textures and texture factors.

Results: The surface glossiness and shape patterns of textures strongly affected degrees of affinity and that surface colors had little impact. A sensory evaluation of the clay textures using factor analysis yielded four sensory factors. Dry and simple factors strongly affected the degrees of affinity. Furthermore, we found that apparent comfort is intimately related to the attractiveness of textures. The physical and sensory factors effectively captured 68% and 75% of the variance respectively (Fig.2.)

Conclusion: We revealed the factors of textures that appeal to human touch and specified the linear connection of the factors of textures could describe the affinity effectively.

Fig.1 Clay-made molded textures

Biography

Hikaru NAGANO received a B.S, degree in engineering from Nagoya University, Japan in 2010. Currently, he is a Ph.D. candidate in the Department of Mechanical Science and Engineering, Nagoya University. His research interests include human perception.

• The physical and sensory factors effectively described the degrees of haptic invitation with accuracies of 68% and 75%, respectively.

Noncontact Nanometric Positioning of Probe Tip for Measurement of Mechanical Parameters of Cell

Keitaro Ito

ito.keitaro@biorobotics.mech.nagoya-u.ac.jp

Shinya Sakuma sakuma@biorobotics.mech.nagoya-u.ac.jp

> Fumihito Arai arai@mech.nagoya-u.ac.jp

Department of Mechanical and Aerospace Engineering Nagoya University Furo-cho, Chikusa, Nagoya, Japan 464-8603

Abstract

In the bioengineering filed, it is important to apply the mechanical stimulation to the cell for the purpose of measuring the mechanical parameter of the cell and analysis the response of the cell. Recently, many researchers give a great attention to the quality of the cells by measuring the mechanical parameters of the cells In the on-chip cell manipulation filed, the important features of the actuation method are the power and the resolution of manipulation. In order to obtain the nanometric order resolution with high power, we proposed the reduction mechanism. This mechanism utilizes the serially-connected springs with different stiffness, and is driven by magnetic force. (Fig. 1). Probe features are shown as follows: (1) probe is actuated in a microfluidic chip, (2) high power and high resolution in positioning, (3) robust from disturbance by employing parallel plate structure, and (4) chip part is disposable. In this paper we developed nanometric probe with on-chip reduction mechanism. The performance of the probe was examined. We succeeded in nanometric order non-contact actuation of on-chip probe tip by using reduction mechanism.

Fig.2 shows the evaluation of the repetitive positioning accuracy. The performance of the probe was examined, and the result shows that the standard deviation of displacement of probe tip was under 0.18 μ m (Tab.1). The manipulation power was estimated to several 100 μ N. Consequently we succeeded in nanometric order non-contact actuation of on-chip probe with a relatively high power.

Fig.1 Concept of on-chip probe with nanometric resolution in positioning by using reduction mechanism

Tab.1 Experimenta	l result of	repetitive	accuracy
-------------------	-------------	------------	----------

Stage [µm]f		40	60	80	100	200	300	400	500
Manipulation	AVE	2.68	3.89	5.23	6.56	13.24	19.03	23.21	26.22
point [µm]	STD	0.18	0.14	0.12	0.10	0.10	0.10	0.10	0.12
Actuation point [µm]	AVE	20.8	30.0	39.8	50.8	100.3	147.0	166.9	178.1
	STD	1.96	1.19	1.09	1.14	1.32	1.47	1.12	1.23
Reduction i	ate	7.76	7.72	7.61	7.74	7.58	7.73	7.19	6.79

Biography

Keitaro Ito is a Bachelor student in the Mechanical and Aerospace Engineering, Nagoya University.
Noncontact Nanometric Positioning of Probe Tip for Measurement of Mechanical Parameters of Cell

2012.3

Keitaro Ito¹, Shinya Sakuma¹, and Fumihito Arai^{1,2} ¹Nagoya University, JAPAN, and ²Seoul National University, KOREA

For the high speed and continues measurement of mechanical properties of the cell

Occupant response in vehicle frontal crash

Takuya ITAKURA itakura.takuya@e.mbox.nagoya-u.ac.jp Koji Mizuno kmizuno@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

In vehicle crashes, a high level of acceleration is applied to the passenger compartment according to car deformation. The high acceleration can induce injuries to occupants. It has been indicated that a shape of crash pulse affects the occupant kinematics. I research the crashworthiness of vehicles with respect to the crash pulse and injury risks to the occupant.

Computer simulations are conducted using LS-DYNA and MADYMO. Vehicle structure, crash dummy, and human finite element (FE) model are used (Fig. 1). The occupant kinematic behavior is examined in the acceleration field. I investigate how the vehicle acceleration shape was generated by the crush of vehicle structures or components. I also compared the crash dummy and the human FE models, and found that the human FE model shows more flexible behavior compared to the crash dummies.

Assuming that the occupant responses as input/output system, a finite impulse response (FIR) was applied (Fig. 2). It was demonstrated that the occupant acceleration can be predicted by the FIR method when vehicle acceleration is provided (Fig. 3). In various conditions of impacts, the FIR was examined. It was shown when the intrusion into the passenger compartment is large or the interaction between the airbag and the occupant body changes due to high severity of impact, it was difficult to predict the occupant response.

The crash pulse was optimized using steepest descent method to minimize the chest acceleration of the crash dummy model. The optimized crash pulse was the high acceleration in the initial phase, small acceleration in the middle phase and again high acceleration in the final phase. The optimized crash pulse was effective for the human FE model (Especially, the chest deflection was very small). This crash pulse can be useful for hyper-minicars that the acceleration level is severe in a crash. I have started to investigate the vehicle structures that can generate the optimum crash pulse for these small cars.

Fig. 1 Finite element model

Fig. 2 Occupant response system

Fig.3 Predicted vehicle acceleration

Fig.4 Optimized crash pulse

Mechanical properties of carbon nanotubes with one-dimensional intramolecular junction

Yusuke KINOSHITA*, Motoyuki MURASHIMA**, <u>Masaki KAWACHI</u>***, Nobutada Ohno****

*kinoshita@mech.nagoya-u.ac.jp, **murashima@mml.mech.nagoya-u.ac.jp, ***kawachi@mml.mech.nagoya-u.ac.jp

Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Mechanical properties of single-walled carbon nanotubes with one-dimensional intramolecular junctions (CNT-IMJs) are investigated using first-principles density functional theory calculations (Fig. 1). The influence of Stone-Wales (SW) defects (a pair of five- and seven-membered rings) at a junction on the Young's modulus, tensile strength and breaking strain of the CNT-IMJs are discussed from the charge density and interatomic distance.

Our calculations reveal that deformation concentration on a seven-membered ring causes the decrease in the strength and elongation of the CNT-IMJs (Fig. 2). It is found that the tensile strength and breaking strain of the CNT-IMJs depend on the position of SW defects (Fig. 3), while the number of SW defects hardly affects them. The applicability of AIREBO classical interatomic potential to simulate tensile deformation in the CNT-IMJs is also discussed.

Biography

Masaki Kawachi received the bachelor degree in mechanical engineering from Nagoya University, in 2010.

Fig. 1 Simulation models of SWCNT with one-dimensional intramoleclar junction (CNT-IMJs).

Fig. 3 Tensile stress-strain curves calculated from first-principles.

Mechanical properties of carbon nanotubes with one-dimensional intramolecular junction

Yusuke KINOSHITA, Motoyuki MURASHIMA, <u>Masaki KAWACHI</u>, Nobutada Ohno

Introduction

Mechanical properties of single-walled carbon nanotubes with one-dimensional intramolecular junctions (CNT-IMJs) are investigated using firstprinciples density functional theory calculations. The influence of Stone-Wales (SW) defects (a pair of fiveand seven-membered rings) at a junction on the Young's modulus, tensile strength and breaking strain of the CNT-IMJs are discussed from the charge density and interatomic distance.

The applicability of AIREBO classical interatomic potential to simulate tensile deformation in the CNT-IMJs is also discussed.

Analysis

Models

* Pri	stine CNT	(6,0), (8,0)	
* CN	T-IMJs	IMJ-1, IMJ-2, IMJ-3 (F	ig. 1)

 $\sigma_{\rm B}$

 \mathcal{E}_{B}

 $E_{\rm F}$

Analyzed properties E

- Young's modulus
- Tensile strength
- * Breaking strain
- * Formation energy

 $E_{\rm F} = [E^{\rm IMJ} - (e^{(6,0)} \times N^{(6,0)} + e^{(8,0)} \times N^{(8,0)})] / N^{\rm IMJ}$

- N IMJ, E IMJ The number of atoms and energy of CNT-IMJ
- e (6,0), e (8,0)
- | Energy per atom of each pristine CNT N^(6,0), N^(8,0)

[|] The number of atoms of each pristine CNT

Conclusion

Our calculations revealed that deformation concentration on a seven-membered ring causes the decrease in the strength and elongation of the CNT-IMJs.

It was found that the tensile strength and breaking strain of the CNT-IMJs depend on the position of SW defects, while the number of SW defects hardly affects them.

39

Road detection system outdoor -Image recognition with Improved Flood Fill-

Yu MAEDA

maeda@robo.mein.nagoya-u.ac.jp Kosuke Sekiyama sekiyama@robo.mein.nagoya-u.ac.jp

Toshio Fukuda

fukuda@robo.mein.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

In order for cars to safely run in an unpaved environment, such as paddy field, mountain with steep slopes and many objects on the ground, we propose an image recognition method for movable region on unpaved roads. It is based on Flood Fill method integrated with color information.

Flood Fill is a segmentation method to paint connected seed points like a bucket fill tool of bit map paint. We applied Flood Fill to video input images. During the process, it gets the mean colors of each region, and selects all the regions which are similar to the biggest region's color in the bottom quarter of the input image. Then, it calculates the color distances of the input and three types and selects a type of the minimum distance. It enables the vehicle to find which road type it is on. Furthermore, we use hysteresis of previous frames to recognize those roads more precisely.

We have already achieved a high degree of accuracy for recognition of paved and unpaved roads. It is efficient in comparison to other road detection methods which have ever been done.

In the future, we will focus on expecting the slippery probability of roads from road type and movability of the differences in level and slopes.

Biography

Yu Maeda received the Bachelor degree in Mechanical Engineering from Nagoya University in 2011, and a master course student in Mechanical Science & Engineering of graduate school of Nagoya University. He is focusing on the studies of road detection.

Results of our method

Road detection system outdoor -Image recognition with Improved Flood Fill-

Yu Maeda,

Kosuke Sekiyama and Toshio Fukuda,

Nagoya University

March, 2012

PURPOSE

In order for cars to safely run in an unpaved environment, such as paddy field, mountain with steep slopes and many objects on the ground, we propose an image recognition method for movable region on unpaved roads. It is based on Flood Fill method integrated with color information.

Fig. 1 Target environment

• There is no mountain maps in a high degree of accuracy. • Kong et al. couldn't decide a road color due to the coverage of sand and snow \rightarrow Vanishing point \rightarrow Not so good (Fig. 2) Road → Asphalt, ground or lawn?

Fig. 2 Kong et al. (2009)

EXPERIMENT

Flood Fill is a segmentation method to paint connected seed points like a bucket fill tool of bit map paint. We applied Flood Fill to video images (Panasonic SDR-100). During the process, it gets the mean colors of each region, and selects all the regions which are similar to the biggest region's color in the bottom quarter of the input image. Then, it calculates the color distances of the input and three types and selects a type of the minimum distance. It enables the vehicle to find which road type it is on. Furthermore, we use hysteresis of previous frames (5 and 10 frames before) to recognize those roads more precisely.

Fig. 4 Results of 10 scenes. Input image (left) and result image (right) Our method, even it uses only camera information, can detect roads as the same as Alvarez Method 2. It takes 583 msec (C++, Core(TM)2 Quad CPU Q8200 @ 2.33 GHz) and 145 msec when we ignore the regions smaller than 5/1000. Alvarez et al.'s took about 735 msec (Matlab, Pentium-4

CPU	@ 2.8	3 GH	z).	1 2 -		1 0.9 0.8	•****	••	******	
Coartin	geney table	Gro	and truth		F	0.6 0.5 0.4 0.3				
4.02	Reed	TP		Input		0.2				_
Revell	Non-read	\bigcirc	TN		- I	0	5	10	15	20
TABLE	II. DEFE	NITION OF	EVALUATIVE VALU	es >			Sce	ne	S	
Pixel	wise measury	e :	Definition	Correct image		0.828 +	- 0.092	0	0.824 +	0.094
Qual	ity	Q=T	P/(TP+FP+FN)		DR	0.958 +	- 0.040	DR	0.876 +	0.070
Deter	tion rate	DR=	TP/(TP+FP)	0		0.859 +	- 0.093	DΔ	0.929 +	0.069
Detes	ction accuracy	DA=	TP/(TP+FN)		F	0.000 +	0.055	F	0.920 ±	0.060
Effec	tiveness	F=2*	DA#DR/(DA+DR)	Output		Ignore	d	<u> </u>	Not ignore	-0.000
	TABL	ЕШ.	COMPARISON OF RI	ISULTS		1				_
	Complete database							******		
	Improved Fla	ood Fill*	Alvare: Method *	Alvare: Method 2		0.7				-
Q	0.84±0	.08	0.68±0.16	0.84±0.23	F	0.5				_
DR	0.91±0	0.07	0.57±0.14	0.87±0.30		0.3				Ξ
DA	0.91±0	.05	0.69±0.10	0.90±0.22			5	10	15	
F	0.91±0	.05	0.63±0.10	0.86±0.25			Sce	ne	s	
Our metha	od with superimportation, c. The hidde	ation and with	h ignorance of small region res of theirs, it was internat	s. b. Results of using only H5 ed 3D cues and other much		0.828 +	+ 0.092	0	0.836 +	0.084
formation.	-			-		0.958 ±	+ 0.040		0.906 +	0.075
	-	5	S 87 3	Star Star	DA	0.859 1	0.093	DA	0.914 +	0.051
1	1000		Sector Sector	CORE -	F	0.903 +	0.058	F	0.909 +	0.052
	and the second s	12		A REAL PROPERTY.	-	Single in	1200	Sun	erimnosed	image
	1				Fig	6 Comp	arison of	fign	ored/not i	gnored
	F	ig. 5 A	lvarez et al. (2	010)	200	d cinglo/cu	unorimn	0.000	limago	shored
				,	dille	a single/st	aberimb	uset	annage	

CONCLUSION

We proposed a new road detection method using Flood Fill and it detected in a high degree of accuracy in comparison to the method with 3D information. In the future, we will construct a new algorithm for mountain exploration to expect the slippery probability of roads from road type information and calculate the movability of the differences in level and slopes. Moreover, we will challenge more complicated road detection with the variety of weathers.

Parylene Based Catheter Type Flow Sensor for Detecting Breathing Characteristics

Yudai YAMAZAKI yamazaki.yudai@g.mbox.nagoya-u.ac.jp Mitsuhiro SHIKIDA shikida@mech.nagoya-u.ac.jp Kazuo SATO sato@mech.nagoya-u.ac.jp Dept. of Micro-nano Systems Eng., Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

The number of cases of chronic obstructive pulmonary disease (COPD), an adult disease, is increasing rapidly. Spirometry is normally used to evaluate the state of this disease.(Fig. 1) It measures the flow at the human mouth. However, the lesions are caused at the ends of diverging bronchi.

We proposed a catheter type thermal flow sensor to evaluate breathing characteristics in small bronchus by means of MEMS technologies. The schematic view of the sensor is shown in Fig. 2. The sensor was suitable for the reciprocating flow measurement and using in vivo.

This sensor was fabricated with biocompatible materials, and parylene was used as a sensor substrate because this sensor was used in vivo. A metal heater working as a flow velocity sensor was formed on the thin parylene film. Hot-wire anemometry sensing was chosen because the flow rate could be measured over a wide range and it had simple structure. However, the signal output of the thermal flow sensor depends on gas temperature. To compensate the flow rate by the temperature change, we integrated the temperature sensing function onto the sensor. It increased the accuracy of the sensor.

The animal experimental setup was shown in Fig.3. We confirmed that this sensor could detect the breathing characteristics at the air passage in mice.

Fig. 1 Measurement by a spirometry

Biography

Yudai Yamazaki received the Bachelor degree in Engineering from Nagoya University in 2011. He is currently a Master course student in Nagoya University, focusing on MEMS technology.

Parylene Based Catheter Type Flow Sensor for Detecting Breathing Characteristics

Yudai Yamazaki¹, Mitsuhiro Shikida², and Kazuo Sato³ ¹Dept. of Micro-nano Systems Engineering, Nagoya University, Nagoya, Japan ²Center for Micro-Nano Mechatronics, Nagoya University, Nagoya, Japan ³Dept. of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan

ABSTRACT

We proposed a catheter thermal flow sensor to evaluate breathing characteristics in small bronchus by means of MEMS technologies. We used biocompatible parylene HT film as a substrate, and we protected the heater element with parylene C. Hot-wire anemometry sensing was chosen because it had simple structure. However, the sensor output depends on gas temperature. To compensate the flow rate value by the temperature change, we integrated the temperature sensing function onto the flow sensor. We succeeded in evaluating breathing characteristics at the air passage in mice.

EHL Analysis of CMP Process by Using ALE Finite Element Method

Masakazu ASABA Graduate School of Engineering, Nagoya University Norikazu SUZUKI nsuzuki@mech.nagoya-u.ac.jp Yohei HASHIMOTO hashimo1982@yahoo.co.jp Furo-cho,Chikusa-ku,Nagoya 464-8603,JAPAN asaba@upr.mech.nagoya-u.ac.jp

Abstract

A dynamic structure analysis model of Chemical Mechanical Polishing (CMP) process is developed by utilizing a finite element method (FEM) in the present study. By considering relative motion of a wafer and a polishing pad in a steady-state process, a nonlinear equation of motion is derived based on Arbitrary Lagrangian-Eulerian (ALE) method in the proposed model.

Since the dynamic CMP process in the steady-state can be treated as a static problem in an ALE coordinate system, practical large scale problems can be solved accurately with consideration of the dynamic structural behavior. In order to consider the effect of the nonlinear elastic deformation of the polishing pad due to micro asperity contact, nonlinear elasticity of the pad surface asperity layer is also formulated.

The dynamic structural analyses considering the nonlinear viscoelastic characteristics of the polishing pad were carried out by applying the proposed model.

Analytical results indicate that stress concentration beneath the leading edge of the wafer greatly depends on the viscoelasticity of the polishing pad, i.e., the consideration of dynamic viscoelastic behavior of the polishing pad is significantly important to predict the polishing pressure distribution especially around the wafer edge area.

Biography

Masakazu Asaba received the Bachelor degree in Engineering from Nagoya University. I am currently first-year master in Nagoya University, focusing on the studies of CMP process analysis. I'm interested in precision technology.

EHL Analysis of CMP Process by Using ALE Finite Element Method

M. Asaba, N. Suzuki, Y. Hashimoto

Graduate School of Engineering, Nagoya University, Japan, asaba@upr.mech.nagoya-u.ac.jp

4. Conclusion

Nonlinear elasticity of the surface asperity layer of the polishing pad is formulated based on G-W micro contact model and applied to ALE finite element analysis to calculate contact stress distribution in the CMP process. From the analytical investigations, it was clarified that the contact stress distribution changes depending on both the nonlinear elasticity and the viscosity of the polishing pad. Especially, the stress concentration around leading edge of the wafer greatly changes. The fluid pressure distribution was also affected due to a change of stress distribution. And thus, simultaneous considerations of "the nonlinear elasticity" and "the viscosity of the polishing pad" are essential to predict the contact stress distribution especially around the wafer edge area.

Study on Tool Damage in High-speed Ceramic Milling of Superalloys

R. Enmei^{*1}, N. Suzuki^{*1}, J. Eto^{*1,*2}, E. Shamoto^{*1} H. Yoshida^{*2}, R. Shibata^{*2} and Y. Hasegawa^{*2}

 ¹ Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN <u>enmei@upr.mech.nagoya-u.ac.jp</u>
 *2 Nagoya Guidance & Propulsion Systems Works, Mitsubishi Heavy Industries, Ltd.

Abstract

Nickel based superalloy Inconel 718 is beginning to be widely used in aerospace industries. Inconel 718 is also well-known as difficult-to-cut materials due to its high cutting resistance, high temperature-strength and work hardening. High speed milling with SiAlON ceramic tip can attain highly-efficient machining of this material with respect to the conventional tungsten carbide machining. However, the tool life of SiAlON ceramic tip is extremely short due to excessive tool damage with severe boundary wear and unexpected breakage. Although the dynamics of the mechanical structures is suspected to affect the tool life significantly in the ceramic milling, the impact of less dynamic stiffness on the tool damage is not clarified well. Tool damage progress mechanism in ceramic milling of Inconel 718 is experimentally investigated focusing on the influence of the dynamics of the mechanical structures.

A series of cutting tests were conducted and the influence of the dynamics of the mechanical structures on the tool damage was examined. The workpiece fixture was developed and applied to the experimental investigations (see Fig. 1). Its dynamic stiffness and natural frequency in the vertical direction can be changed simultaneously by adjusting the work stage thickness and width. Maximum compliances and natural frequencies are summarized in Table 1.

From the experimental results, the tool wear in the flank face makes progress easily as the stiffness decreases, as shown in Fig. 2. It was confirmed that higher dynamic stiffness in the vertical direction is advantageous to prevent tool damages. In order to clarify the mechanism of the tool damage progress, further investigations on the tool wear mechanism are conducted, which are presented on the POSTER.

Fig.1 Experimental setup with developed workpiece fixture

Fig.2 Cumulative cutting length v.s. flank wear width

Biography

I, Risa EMMEI, received the Bachelor degree in Engineering from Nagoya University. I am currently focusing on the studies of manufacturing technology as a first-year master in Nagoya University. I play the Cello in the Orchestra club.

Study on Tool Damage in High-speed Ceramic Milling of Superalloys

R. Enmei, N. Suzuki, J. Eto, E. Shamoto, H. Yoshida, R. Shibata and Y. Hasegawa Graduate School of Engineering, Nagoya University, Japan, enmei@upr.mech.nagoya-u.ac.ip Nagoya Guidance & Propulsion Systems Works, Mitsubishi Heavy Industries, Ltd.

1. Introduction

Nickel based superalloy Inconel 718 is beginning to be widely used in aerospace industries. Inconel 718 is also well-known as Difficult-to Cut materials due to its high cutting resistance, high temperature-strength and work hardening. High speed milling with SiAION ceramic tip can attain highly-efficient machining of this material with respect to conventional tungsten carbide machining. However, the tool life of SIAION ceramic tip is extremely short due to excessive tool damage with severe boundary wear and unexpected breakage. Although **the dynamics** of the mechanical structures is suspected to affect the tool life significantly in the ceramic milling, the tool damage mechanism is not clarified well.

engine

Tool damage mechanism in ceramic milling of Inconel 718 is experimentally investigated focusing on the influence of the dynamics of the mechanical structures. Experimental investigation

→ The workpiece fixture, whose dynamic stiffness and natural frequency can be adjusted simultaneously, was developed and applied to a series of fundamental tool life tests.

Wear mechanism evaluation

→ The tool damage mechanism was investigated through cutting edge shape measurements.

Relationship between dynamic stiffness and tool damage

Experimental investigation

- The special workpiece fixture was developed.
- Its dynamic stiffness and natural frequency in vertical direction can be changed by adjusting work stage thickness and width.
- Influence of the dynamics on tool damage is investigated.

Table Dynamics of designed stage

						T	
C	Stage siz	e, mm		G 1st bending mode			
Settings	Thickness	Width	Comp	liance, µm/N	Frequency, Hz	Cutt	
A-low	5	135	es	1.64	977	Fee	
B-low	8	170	Ga	0.90	993	Axial	
B-high	5	96	- is	0.97	1580		
C-low	15	230	p s	0.30	982		
C-high	8	119	es	0.24	1663		
D-high	15	155	£	0.06	1813		
H	-	-	Sti	0.01	133		

ble Experimental condition 700 m/min ing speed 0.08, 0.15 mm/tooth d rate f t 1.0 mm lepth of cu

Uppei

Cumulative cutting length v.s. flank wear width

freq. - amp.(at 1st ps sp-A-low, 101404 - 67.7pe a B-low, 102008 - 16.6pm = B-bigh, 1602Hz - 4.8µ = C-bigh, 1675Hz - 3.8µ = C-bigh, 1675Hz - 3.8µ

Cutting length v.s. flank wear width (ft : 0.15 mm/tooth)

1 pass(63.2 m)

groove 100 μm

Measured Cross sections of cutting edges at D-high (*ft*: 0.08 mm/tooth, Breakage generated at 224 m)

nt". The tensile stre

Rake angle

Chip angle

ponding to the

2pass 3pass

Flank wear grows progressively larger, resulting in breakage on the Rake face. Higher dynamic stiffness of the mechanical structure is advantageous to prevent flank wear and breakage.

Chatter vibration occurs when milling with the low dynamic stiffness structures A-low and B-low, resulting in short tool life.

Dynamic stiffness of the mechanical structure significantly affects

Mea

the flank wear amount and breakage.

Estimation of tool wear mechanism

Transition of cutting edge shape

A confocal laser microscope was utilized to measure the cutting edge shape before/after each pass, and the transition of the cutting edge shape was investigated.

The cutting edge shape gradually deteriorates as the cumulative cutting distance increases. After 1st pass, 2 pass: Tool wear progresses and the cutting edge becomes chamfered After 3rd pass: A specific groove is formed at the center of the hamfered cutting edge.

After 4th pass: Breakage was observed.

Cutting edge angle of Groove

"Shear-type chip" was observed by using SEM. From the measured geometry of the chip and the cutting edge, a cutting process with extremely small shear angle was estimated

SEM image of sampled chip (L) ft 0.15 mm/tooth (R) ft 0.08 mm/tooth Conclusion

Estimated cutting process in ceramic milling of Inconel 718 with shear-type chip generation

ear angle

✓ Higher dynamic stiffness and lower natural frequency in the vertical direction are advantageous to prevent tool damages.

- The cutting edge shape gradually deteriorates as the cumulative cutting distance increases
- A Specific groove is formed at the center of the chamfered cutting edge before breakage occurrence.
 - Chip removal process is classified into the shear-type.

On statistical properties of a turbulent boundary layer affected by the cylinder wake in a freestream

Kousuke HIRUTA hiruta.kosuke @a.mbox.nagoya-u.ac.jp Kouji NAGATA nagata@mech.nagoya-u.ac.jp Yasuhiko SAKAI ysakai@nagoya-u.jp Osamu TERASHIMA o-terashima@mech.nagoya-u.ac.jp Yasumasa ITO yito@mech.nagoya-u.ac.jp

Department of Mechanical Science and Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Effects of a cylinder wake turbulence (CWT) on a turbulent boundary layer (TBL) over a flat plate are experimentally investigated in a wind tunnel (Fig.1). The cylinder location was changed to generate different types of turbulence (fig.2).

Figure 3 shows that turbulence intensities normalized by the inner parameters in the case of turbulent boundary layer with periodic cylinder wake turbulence in a freestream (Case 3). The turbulence intensities are suppressed by the cylinder wake.

Figure 4 shows the ensemble average of velocity in the bursting event in the case of turbulent boundary layer with periodic cylinder wake turbulence in a freestream (Case 3). The velocity fluctuation during the sweep phase is increased by the cylinder wake.

Biography

Kousuke HIRUTA received the Bachelor degree in Engineering from Nagoya University in 2011. He currently belongs to the statistical fluid engineering group and is pursuing the Master's degree.

Fig.1 Schematics of experimental apparatus

Fig.2 Experimental condition

Fig. 4 The ensemble average of velocity in the bursting event (Case 3)

On Statistical Properties of a Turbulent Boundary Layer Affected by the Cylinder Wake in a Freestream

OKousuke HIRUTA, Kouji NAGATA, Yasuhiko SAKAI, Osamu TERASHIMA and Yasumasa ITO Dept. of Mechanical Science and Engineering, Nagoya University

Abstract

Effects of a cylinder wake turbulence (CWT) on statistical properties of a turbulent boundary layer (TBL) over a flat plate are experimentally investigated in a wind tunnel. The results show that turbulence intensities normalized by the inner parameters are suppressed by the cylinder wake. The velocity fluctuation during the sweep phase in the bursting event is increased by the cylinder wake.

Introduction

Past researches on turbulent boundary layers have shown that the turbulence intensities are strongly affected by freestream turbulence. Most of these researches have investigated only the effects of weak, small-scale turbulence in a free stream. On the other hand, we investigated the effects of large-scale freestream turbulence generated by a cylinder on statistical properties of a turbulent boundary layer. Experiments have been carried out in a wind tunnel and the streamwise and vertical velocities were measured by a hot wire anemometer.

Experimental condition

Schematic view of experimental apparatus

Experimental condition of pure turbulent boundary layer without free stream turbulence

Results

Case 1 : Turbulent boundary layer directly influenced by no-periodic cylinder wake turbulence in a free-stream

Experimental setup

Vertical profiles of turbulent intensities

Ensemble average of instantaneous velocity in the bursting event ($y^+ = 36$)

<u>Case 2</u>: Turbulent boundary layer indirectly influenced by no-periodic cylinder wake turbulence in a free-stream

Vertical profiles of turbulent intensities

3 : Turbulent boundary layer indirectly influenced by periodic cylinder wake turbulence in a free-stream

stiy/

the bursting event (y* = 36)

Ensemble average of instantaneous velocity in

Results

Turbulence intensities normalized by the inner parameters are suppressed by the cylinder wake in all cases. In the case of TBL with CWT in a freestream(Cases 2 and 3), turbulence intensities in the outer region are largely suppressed compared with that in the TBL directly influenced by

CWT(Case 1). • The velocity fluctuation during the sweep phase in the bursting event is increased by the cylinder wake. On the other hand, the velocity fluctuation increased by the cylinder wake. On the other hand, the velocity fluctuation during the ejection phase in the bursting event does not significantly change.

References (1) Blackwelder, R. F. and Haritonidis, J. H., "Scaling of the bursting frequency in the turbulent boundary layer", Journal of Filidi Mechanaics, Vol. 318, (1996), pp. 339-372. (2) Nagata, K., Sakai, Y., and Komori, S., "Effects of small-scale freestream turbulence on turbulent boundary layers with and without thermal convection", Physics of Fluids, Vol. 23, (2011), 065111.

Measurements of High-Schmidt-Number Scalar Mixing Layers in Grid Turbulence by means of PIV and PLIF

Koichi HOSHINO

Hoshino.koichi@e.mbox.nagoya-u.ac.jp Yasuhiko SAKAI ysakai@mech.nagoya-u.ac.jp

Kouji NAGATA

nagata@nagoya-u.ac.jp

Hiroki SUZUKI

hsuzuki@nitech.ac.jp

Yasumasa ITO

yito@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

High-Schmidt-Number scalar mixing layers in grid turbulence are experimentally investigated in a water channel. The particle image velocimetry (PIV) and the planar laser induced fluorescence (PLIF) techniques are applied to measure instantaneous streamwise and vertical velocities and instantaneous concentration respectively.

Fig.1 shows the schematic of the experimental apparatus and measuring system. A regular grid or a fractal square grid (Fig.2) is installed at the entrance of the test section to generate turbulence. The flow is separated into upper and lower layers by a splitter plate installed at the upstream of the grid. A turbulent scalar mixing layer develops downstream of the grid. The Reynolds number based on the mesh size, Re_M , is 2500 for both the cases.

Fig.3 shows the instantaneous fluctuation velocity vector, V (u, v), normalized by cross-sectionally averaged mean velocity, U_0 , in the regular grid turbulence and the fractal grid turbulence at $x / M_{\text{eff}} = 40$. It is found that velocity fluctuation in fractal grid turbulence is much larger than that in the regular grid turbulence.

Biography

Koichi HOSHINO received the Bachelor degree in Engineering from Nagoya University in 2011. He was awarded the "Ichiju-syo" in "Nagare-no-Yume Contest" sponsored by Fluids Engineering Division of The Japan Society of Mechanical Engineers in 2010.

Fig.1 Schematic of experimental apparatus.

Fig.2 Schematics of turbulence grids. The left is regular grid and the right is fractal grid.

Fig.3 Instantaneous fluctuation velocity vector, V, normalized by cross-sectionally averaged mean velocity, U_0 , in the regular (upper) and the fractal (lower) grid

Measurements of High-Schmidt-Number Scalar Mixing Layers in Grid Turbulence by means of PIV and PLIF

Koichi Hoshino⁽¹⁾, Yasuhiko Sakai⁽¹⁾, Kouji Nagata⁽¹⁾, Hiroki Suzuki⁽²⁾, Yasumasa ITO⁽¹⁾

(1) Nagoya University (2) Nagoya Institute of Technology

Introduction

The purpose of this study is to investigate high-Schmidt-number scalar mixing layers in regular and fractal grid turbulence in a water channel. The particle image velocimetry (PIV) and the planar laser induced fluorescent (PLIF) are applied to measure instantaneous streamwise and vertical velocities and instantaneous concentration respectively.

Experiments

Fig.1 shows the schematic of the experimental apparatus. A regular grid or a fractal square grid are installed at the entrance of the test section to generate turbulence. The grid parameters are listed in Table. 1. Here, N is the fractal interaction, $D_{\rm f}$ is the fractal dimension, $t_{\rm r}$ is the thickness ratio of the largest to the smallest bar, σ is the blockage ratio, $M_{\rm eff}$ is the effective mesh size, defined as $M_{\rm eff} = (4T^2 / P_{\rm M})\sqrt{1-\sigma}$, where T^2 is the cross-sectional area of the channel and $P_{\rm M}$ is the fractal perimeter's length of the grid. The flow is separated into upper and lower layers by a splitter plate installed at the upstream of the grid. A turbulent scalar mixing layer develops downstream of the grid. The Reynolds number based on the mesh size, Re_M, is 2500 for both the cases.

The particle image velocimetry (PIV) and the planar laser induced fluorescence (PLIF) techniques are used to measure the velocity and concentration fields. Fig.2 shows image processing procedure of PLIF. To obtain instantaneous non-dimensional concentration field, the captured images (Fig. 2(a)) and the background image (Fig. 2(b)) are taken separately. we obtained the processed image (Fig.2(c)) by subtracting the background image (Fig. 2(b)) from the captured image (Fig. 2(a)),. y/M

Results

Fig. 4 The downstream profile of streamwise velocity fluctuations

Fig.1 Schematic of experimental apparatus.

Tab.1 Parameters of grids.							
	N	D_{f}	t _r	σ	$M_{\rm eff}$	Re _M	
Regular	1	2.0	1.0	0.36	10	2500	
Fractal	4	2.0	9.76	0.36	5.68	2500	

Fig.2 Image processing procedure: (a) a captured image; (b) a background image (reference); an instantaneous nondimensional concentration fields provided from (a) and (b). In (a) and (b), white: high brightness; black: zero brightness. In (c), red: C=1; white: C=0.5; blue: C=0, where C is instantaneous non-dimensional concentration.

Fig.3 Instantaneous fluctuation velocity vector, V, normalized by the crosssectionally averaged mean velocity U_0 in the regular (upper) and the fractal (lower) grid turbulence at $x/M_{eff} = 40$.

Fig.3 shows that the velocity fluctuation in the fractal grid turbulence is much larger than that in the regular grid turbulence. Fig.4 shows that the turbulence intensity in the fractal grid turbulence has a peak around x/M = 30 though that in the regular grid turbulence monotonically decreases in the streamwise direction.

Fig.5 shows that the turbulence diffusion is promoted more by the fractal grid turbulence than by the regular grid turbulence even when the Reynolds number, Re_M , is identical.

Turbulent Mixing in a Planar Liquid Jet with a Second-Order Chemical Reaction

Tomoaki WATANABE watanabe.tomoaki@c.nagoya-u.jp Yasuhiko SAKAI ysakai@mech.nagoya-u.ac.jp Kouji NAGATA nagata@nagoya-u.jp Osamu TERASHIMA o-terashima@mech.nagoya-u.ac.jp Yasumasa ITO yito@mech.nagoya-u.ac.jp

Department of Mechanical Science and Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

A turbulent planar liquid jet with a second-order chemical reaction $(A + B \rightarrow R)$ is investigated experimentally. The purpose of this study is to clarify the influence of the chemical reaction on the turbulent mass flux of reactive species. A main stream contains species B and a water solution of species A is issued into the main stream by the planar jet (Fig. 1). The streamwise velocity and the concentrations of all species are measured simultaneously by a combined probe consisting of an I-type hot-film probe and an optical fiber probe based on light absorption spectrometric method.

Figure 2 shows the turbulent mass flux of reactive species on the jet centerline. The results show that the behavior of the turbulent mass flux of the reactant species is different between the upstream (x/d < 25) and the far (x/d > 25) region. The turbulent mass flux of the product species is negative in the upstream region but positive in the far region.

Biography

Tomoaki WATANABE received the Bachelor degree in Engineering from Nagoya University in 2011. He currently belongs to the statistical fluid engineering group and is pursuing the Master's degree.

Fig.1 Schematics of experimental apparatus.

Fig. 2 Streamwise turbulent mass flux of reactive species on the jet centerline

Turbulent Mixing in a Planar Liquid Jet with a Second-Order Chemical Reaction

OTomoaki WATANABE, Yasuhiko SAKAI, Kouji NAGATA, Osamu TERASHIMA and Yasumasa ITO Department of Mechanical Science and Engineering, Nagoya University

Abstract

A turbulent planar liquid jet with a second-order chemical reaction $(A + B \rightarrow R)$ is investigated experimentally. A planar jet (A) is issued into a main stream (B). The streamwise velocity and the concentrations of all species are measured simultaneously. The results show that the influence of the chemical reaction on the turbulent mass flux of the reactant species near the jet exit is different from that in the far region. The turbulent mass flux of the product species is negative near the jet exit but positive in the far region.

Experiments

The purpose of this study is to investigate the influence of the chemical reaction on the turbulent mass flux of reactive species. We used a combined probe which consists of an I-type hot-film anemometer and an optical fiber probe^[1] to simultaneously measure the streamwise velocity and the concentrations of reactive species. The optical fiber probe is based on the light absorption spectrometric method.

Results

•Mean Concentration on the Jet Centerline

·Streamwise Turbulent Mass Flux on the Jet Centerline

•Influence of chemical reaction on $\langle u\gamma \rangle$

In the far region (x/d > 25), the deficient reactant is species A (contained in the jet flow) whereas species B (contained in the main stream) is the deficient reactant in the upstream region (x/d < 25). This difference causes the different behavior of $\leq u\gamma > (i = A, B, or R)$ between the upstream and the downstream region.

Reference

Nakamura, I., Sakai, Y. and Miyata, M., "Diffusion of Matter by a Non-Buoyant Plume in Grid-Generated Turbulence", Journal of Fluid Mechanics, 1987, vol. 178, pp. 379–403.
 Bilger, R. W., Saetran, L. R. and Krishnamoorthy, L. V., "Reaction in a Scalar Mixing Layer.", Journal of Fluid Mechanics, 1991, vol. 233, pp. 211–242.

Improvement of light detection of photodiode with local surface plasmon resonance

Atsushi ISHIGURO ishiguro.atsushi@c.mbox.nagoya-u.ac.jp Yasuyuki MORITA morita@mech.nagoya-u.ac.jp

Yang JU

ju@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN ishiguro.atsushi@c.mbox.nagoya-u.ac.jp

Abstract

Photodiode is widely used as detector of light. It has advantages over the other detectors of light in cost, lifetime and so on. But it has disadvantages in sensitivity of light detection. Therefore, that doesn't suitable for measurement of low- intensity light. In our research, we report improvement of light detection of photodiode via excitation of local surface plasmon resonance in Au nanoparticles deposited on the photodiode surface.

By measuring current of photodiode, we investigated improvement of light detection of photodiode. Fig. 1 shows an optical system for measuring the current. In the experiment, we used two kinds of Au nanoparticles whose diameters are 100nm and 150nm respectively. Before the experiment, Au nanoparticles are scattered by using ultrasonic cleaner.

Fig. 2 (a) shows that current of photodiode increased by 4.4% (100nm), 4.2%(150nm). Fig. 2 (b) shows that it increased by 8.2%(100nm), 6.1%(150nm). But, as density of particles increase, these current decrease(Fig. 3). We considered that the increase were caused by condensation of nanoparticles.

We succeeded improvement of light detection of photodiode as increasing current of photodiode via excitation of local surface plasmon resonance in Au nanoparticles. And we report condensation of particles suppressed the current from increasing.

Fig. 1: Optical system for the experiment

Fig. 2: Current of photodiode as a function of input light power at wavelengths of (a) 850 nm, (b) 980 nm

Fig. 3: Output power ratio of photodiode current enhanced by Au nanoparticles to normal in density variations of particles at wavelengths of (a) 850 nm, (b) 980 nm

Biography

Atsushi Ishiguro received the Bachelor degree in Engineering from Nagoya University in 2011. He is currently Master degree student in Nagoya University, focusing on the studies of fabricating metal nanoparticles.

Improvement of light detection of photodiode with local surface plasmon resonance

Atsushi Ishiguro^{*} Yasuyuki Morita^{*} Yang Ju^{*} * Department of Mechanical and Science, Nagoya Unvercity

March, 2012

PURPOSE

Photodiode is widely used as detector of light. It has advantages over the other detectors of light in cost, lifetime and so on. But it has disadvantages in sensitivity of light detection. Therefore, that doesn't suitable for measurement of low- intensity light. In our research, we report improvement of light detection of photodiode via excitation of local surface plasmon resonance in Au nanoparticles deposited on the photodiode surface.

EXPERIMENT

By measuring current of photodiode, we investigated improvement of light detection of photodiode. Fig. 2 shows an optical system for measuring the current. In the experiment, we used two kinds of Au nanoparticles whose diameters are 100nm and 150nm respectively. Before the experiment, Au nanoparticles are scattered by using ultrasonic cleaner(Fig. 3).

ig. 2: Optical system for the experiment.

(b)

Fig. 3: Observation of Au nanoparticles by SEM:(a) before using ultrasonic cleaner; (b) after using ultrasonic

(b) (a) [mA] Current [mA] Current normal PD ø:100nm, ¢ ø:150nm, ¢ normal PD ø:100nm, ρ ø:150nm, ρ 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 Input light power [mW] Input light power [mW]

RESULTS

Fig. 4: Current of photodiode as a function of input light power at wavelengths of (a) 850 nm, (b) 980 nm

Fig. 5: Output power ratio of photodiode current enhanced by Au nanoparticles to normal in density variations of particles at wavelengths of (a) 850 nm, (b) 980 nm

Fig. 4 (a) shows that current of photodiode increased by 4.4% (100nm), 4.2%(150nm). Fig. 4 (b) shows that it increased by 8.2%(100nm), 6.1%(150nm). But, as density of particles increase, these current decrease(Fig. 5). We considered that the increase were caused by condensation of nanoparticles(Fig. 6).

CONCLUSION

We succeeded improvement of light detection of photodiode as increasing current of photodiode via excitation of local surface plasmon resonance in Au nanoparticles. And we report condensation of particles suppressed the current from increasing.

Effect of cyclic mechanical stretching on stem cell-to-tenocyte differentiation: Assesment by extracellular matrix expression levels and structure

Satoshi SUZUKI Suzuki.satoshi@h.mbox-u.ac.jp Yasuyuki MORITA morita@mech.nagoya-u.ac.jp Yang JU

ju@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

In the human body, tendon is a type of connective tissue which physically binds muscles to skeletal structures permitting locomotion and enhancing joint stability. There are some problems in the current treatment of tendon.

Meanwhile several researchers have shown that cyclic uniaxial stretching effects human marrow mesenchymal stem cells (hMSCs) differentiation into tenocytes. From this, many researchers try to construct tendon tissue from stem cells. The organization of the extracellular matrix (ECM) of tendon is the principal determinants of the physiological function and the mechanical strength of tendon. Tendon is mainly constructed from collagen type I (Col I) and tenascin-C (TNC), so Col I and TNC are commonly used to confirm the differentiation of stem cells into tenocyte and construction of tendon structure.

In this study, stem cells were applied uniaxial cyclic mechanical stretching(Fig.1), and the influence of mechanical stretching on the ECM expression and construction was analyzed. In Fig.2, expression level of Col I and TNC at 48h was higher than at 24h and at 8% stretching was higher than at 10%. Additionally, the increasing rate of ECM expression level from 24h to 48h was higher at 8% stretching than 10%.

From fluorescence images of stem cells and ECM after stretching(Fig.3), at each parameter, positive expression of Col I could be confirmed from all images, but TNC could not. Figure 4 shows the binary images of fluorescence images. The area and degree of circularity of each mass was calculated by image processing. At 10% stretching, the area of Col I was larger and the degree of circularity was smaller than 8% stretching. From this result, at 10% stretching, Col I expressed by mechanical stretching constructed some structure.

Fig.1. Mechanical stretching instruments. Stem were cells seeded on the silicone chamber.

Fig.2. Expression level of ECM measured by absorbance determination.

Fig.3. Fluorescence images. In these images, , blue section shows nucleus, green shows cytoskeleton, red shows Col 1 and purple shows TNC.

Fig.4. Binary images of Col

Biography

Satoshi Suzuki received the Bachelor degree in engineering from Nagoya University in 2011. He is currently a student of master's course in Nagoya University, focusing on the study of tissue engineering.

Effect of cyclic mechanical stretching on stem cell-to-tenocyte differentiation: Assessment by extracellular matrix expression levels and structure

Satoshi Suzuki, Sachi Watanabe, Yasuyuki Morita, Yang Ju Department of Mechanical Science and Engineering, Nagoya University

vel of Col

Col I

Introduction

In the human body, tendon is a type of connective tissue which physically binds muscles to skeletal structures permitting locomotion and enhancing joint stability. However, there are some problems in the current treatments of tendon. Meanwhile several researchers have shown that cyclic uniaxial stretching effects human marrow mesenchymal stem cells(hMSCs) differentiation into tenocyte. Then, many researchers have tried to construct tendon tissue from stem cells. The organization of the extracellular matrix(ECM) is the principal determinants of the physiological function and the mechanical strength of tendon. Tendon is mainly constructed from type 1 collagen(Col 1) and tenascin-C (TNC). In this study, stem cells were applied uniaxial cyclic mechanical stretching, and the influence of mechanical stretching on the ECM expression and construction was analyzed.

Fig.1.Exposure to mechanical stretch.

			Stretch	paramete	er			
		sample1	sample2	sample3	sample4	cor	itrol	
	frequency		11	Ηz		01	łz	
	extension ratio	8	%	10	%	0'	%	
	duration	24h	48h	24h	48h	24h	48h	
	Analyzing ECM							
	•Measuring Expression Level \rightarrow Absorbance Determination •Observing the structure of ECM \rightarrow Fluorescence Staining							
	Measure subject							
Sup	ernatant	Depositio	on 🔥	heorhan		e mo	asurad	at
	+		4: th	50nm v ie meas	vavelen ure subj	gth. Fig jects. Tl	g.2 sho ne subj∉	ows ects

Stem cell

Fig.2. Measure

subject

were ECM dissolved in supernatant

and depositing around cells.

Medium

× 1.29 8% · 24h 8% · 48h 10% · 24h 10% 8% · 24h 8% · 48h 10% · 24h Extension parameters Fig.3. Expression Level of ECM. Increasing rate of ECM(24h→48h) Subject : Supernatant > Deposition 8% 10% Duration : 48h > 24h Col I 1.29 1.18 Extension Ratio : 8% > 10% TNC 2.14 2.11 0~5 10~15 20~25 30~35 40~45 50~55 60~65 70~75 80~85 10~15 20-25 30~35 40~45 50-55 60-65 70-75 80-85 Orientation[°] Orientation[°] (b)10% stretching (a)8% stretching Fig.4. Orientation of Cells after Stretching. 8%:Slowly, 10%:Rapidly Cell Orientation Higher Lower increasing Rapidly stretching rate orientation rate of ECM Analysis structure of Col I Positive expression of Col 1 could be confirmed from all images, but TNC could not. The structure of Col 1 of 8%48h and 10%48h stretching were compared from fluorescence and binary images. The area and degree of circularity of each mass was calculated. Explanatory note Col I Cell nucleus TNC Cell cytoskeleton 100µm Stretch (a)8%48h (b)10%48h Fig.5. Fluorescence Images. Comparison 8% and 10% Average Degree Average Area of Circularity 1289 8% 0.470 10% 1780 0.124 Area $\cdot 10\% > 8\%$ Degree of Circularity : 8%>10% (a)8%48h (b)10%48h Fig.6. Binary Images.

TNC

At 10% stretching, Col 1 constructed some structure.

Figure 3 shows the result of absorbance determination. ECM contained in supernatant was extremely numerous compared with deposition. Especially, this trend was particular at TNC. Additionally, the increasing rate of ECM expression level from 24h to 48h was higher at 8% stretching than 10%. Fig.4 shows comparison of cell orientation between stretching rate. Stem cells responded to mechanical stretching by reorganizing their orientation close to about 60°. Therefore, if stem cells are subjected to mechanical stretching at same extension rate, stimulation for cells is decreased with the orientation.

(1) The expression level of ECM was the highest at 8%48h.

(2) The expression level in supernatant was very high compare with deposition. Especially, this trend was particularly at TNC.

(3)The structure of Col 1 was the most particularly at 10%48h stretching.

(4) The different relativity of strain exists between the expression level and constructing structure of Col 1.

Fabrication of high density Au nanowires by template method

Hiromasa TESHIMA

teshima.hiromasa@f.mbox.nagoya-u.ac.jp

Yang Ju

ju@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

There is an urgent need in nano devices, nano sensor and so on, of high density nanowires which can afford good mechanical support as well as electrical properties. Meanwhile in the nanotechnology, many excellent and unique structure-related properties such as the high mechanical strength, the high conductivity and the adhesion ability of nanowires have been studied. It is important to understand the crystal structure of nanowires in oder to use them as the component of nano devices, nano sensor and so on.

In this paper, we fabricated Au nanowires by template method and observed them by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Figure 1 shows the schematic diagram of process chart of fabricating Au nanowires by template method.

Figure 2 is the AAO tempale used for the fabrication of high density nanowire array. Nanowires were deposited under a constant current of 0.002 A. Au nanowire array was characterized by SEM and TEM. Figure 3 shows that high density Au nanowire array has been fabricated. Au nanowires were continuous and the diameter of the Au nanowires was 200 nm. Au nanowires made on the thin Au film form bundled structures. The formation of these structures is related to the attractive interaction among the nanowires, for example van der Waals attraction. Figure 4 shows that Au nanowire had high density because electron beam didn't penetrate through the nanowire. Figure 5 shows that Au nanowire was polycrystalline structure because diffraction pattern image of Au nanowire was circular pattern.

Fig.1 Schematic of process chart of fabricating Au nanowires by template method.

Fig.2 SEM image of AAO template.

Fig.4 TEM image of Au nanowire.

Fig.5 Diffraction patterns image of Au nanowire.

Biography

Hiromasa Teshima received the Bachelor degree in Engineering from University of Nagoya, Japan, in 2009. He is currently a student of master's course in Nagoya University, studying Fabrication of high density Au nanowires by template method.

Fabrication of high density Au nanowires by template method

Hiromasa Teshima, Yang Ju

Department of Mechanical Science and Engineering, Nagoya University

March, 2012

There is an urgent need in nano devices, nano sensor and so on, of high density nanowires which can afford good mechanical support as well as electrical properties. Meanwhile in the nanotechnology, many excellent and unique structure-related properties such as the high mechanical strength, the high conductivity and the adhesion ability of nanowires have been studied. It is important to understand crystal structure of nanowires in order to use them as the component of nano devices, nano sensor and so on.

In this paper, we fabricated Au nanowires by template method and observed them by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

To fabricate high density nanowire array, we adopt template method (Fig. 1a). Nanowires were deposited under a constant current of 0.002 A for 24h, 48h and 72h (Fig. 1b). Figure 2 shows SEM image of AAO template. Au nanowire array was characterized by SEM and TEM. Finally, we investigated a crystal structure of Au nanowire.

Fig. 1 Schematic of fabricating Au nanowires method: (a) Process chart of template method; and (b) Schematic of electrodeposition.

Fig. 2 SEM image of AAO template x10000.

SEM images shows that high density Au nanowire array has been fabricated for 24h, 48h and 72h (Fig. 2a, b, c, d, e, f). Au nanowires were continuous and the diameter of the Au nanowires was 200 nm. In all cases, Au nanowires made on the thin Au film formed bundled structures. It was considered that the formation of these structures was related to the attractive interaction among the nanowires, for example van Waals attraction. It was considered that this der phenomenon was characteristics of Au nanowires because the surfaces of Au nanowires were inoxidezable. In the cases of other metals, in order to repel each nanowires by having a slightly negative charge at the oxidized surfaces, nanowires are considered not to form bundled structures. In addition, it was found that the longer Au nanowires were, the larger bundled structures of Au nanowires became.

Figure 3g shows results of length measurements. It was found that the length of nanowires was in proportion to the time of electrodeposition.

Figure 4a and b show TEM image of Au nanowire. Figure 4 shows that Au nanowire had high density because electron beam didn't penetrate through the nanowire. Figure 4b shows TEM image of particle which constitute Au nanowire. It was considered lattice spacing of particle which constitute Au nanowire was 2.64 Å. On the other hand, in the case of Au, the longest lattice spacing (111) was 2.35 Å. So lattice plane of particle which constitute Au nanowire was considered to be (111) plane. Figure 4c shows electron diffraction pattern image of Au nanowire. This image shows a circular pattern and it was found that Au nanowire was polycrystalline structure. In addition, from that this circle was not perfect, it was found that the orientation distribution of crystal grain was not completely random and that the nanowire was polycrystal with a preferred orientation.

Fig. 3 SEM images of nanowires: time of deposition = 24h (a) view of the surface x5000; (b) cross-sectional view x5000; time of deposition = 48h (c) view of the surface x5000; (d) cross-sectional view x3000; time of deposition = 72h (e) view of the surface x5000; (f) cross-sectional view x2500; and (g) results of length measurements.

Fig. 4 TEM investigations of the individual nanowire: (a) TEM image of the Au nanowire; (b) high-resolution image; and (c) diffraction patterns of the Au nanowire shown in b.

1. High density Au nanowire array has been fabricated.

2. In all cases, Au nanowaires formed bundled structure.

3. The length of Au nanowire was in proportion to the time of electrodeposition.

4. TEM observation showed Au nanowire was high density and polycrystalline structure.

5. It was considered the growth direction of particles which constitute Au nanowires was (111).

Measurement of electrical properties of cell surface by Microwave Atomic Force Microscopy

Takanori MAKINO makino.takanori@e.mbox.nagoya-u.ac.jp Atsushi HOSOI hosoi@mech.nagoya-u.ac.jp Yasuyuki MORITA morita@mech.nagoya-u.ac.jp Yang JU ju@mech.nagoya-u.ac.jp

Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Recently, regenerative medicine has been focused with stem cells that can regenerate lost human tissues and organs. It has become a great need to measure healthiness of cells non-invasively because of fear that non-health cells become cancer cells. We have proposed a microwave atomic force microscope (M-AFM) which can measure electrical properties and topography of cells has been developed.

M-AFM technique is a combination of the principles of an atomic force microscopy (AFM) and a microwave measurement technique. Microwave signals are emitted forward to the sample and reflection signals of microwave from the sample detected at the tip-top of the cantilever. The reflection signals of the microwave are measured to determine the electrical properties of the materials.

M-AFM probe was fabricated on a non-doped GaAs wafer by using wet etching process. A parallel-plate waveguide was formed by evaporating Au films onto the top and bottom surfaces of the probe. To make microwave signals emit from the tip-top of the probe, a nano-slit introduced by using focused ion beam (FIB) fabrication. Figure 1 shows the fabricated M-AFM probe.

Stem cells were used as a sample. AFM topography image and microwave image of the output voltage that was converted from the measured microwave signals were obtained by M-AFM, simultaneously. Figure 2 shows the experimental results. The M-AFM worked in non-contact mode. The scanning speed was fixed to 5 μ m/s, the scanning area was 20 μ m x 20 μ m. The response of the microwave signals changed corresponding to the different tissues of the cell. The experimental result demonstrates that electrical properties of the cell are different from each cell tissue.

(c) (d) Fig.1 SEM images: (a) the tip of the GaAs AFM probe; (b) the cantilever of the M-AFM probe; (c) the M-AFM probes; (d) the nanoslit of the M-AFM probe

(a) (b) Fig.2 The scanning results of the stem cells by the M-AFM: (a) AFM topography; (b) Imaging by microwave signals.

Biography

Takanori MAKINO received the Bachelor degree in Engineering from University of Nagoya, Japan, in 2009. He is currently a student of master's course in Nagoya University, studying the measurement of electrical properties of the materials by microwave atomic force microscopy.

Measurement of electrical properties of cell surface by Microwave

Atomic Force Microscopy

T. MAKINO*, A. HOSOI*, Y. MORITA* and Y. Ju* * Department of Mechanical Science and Engineering, Nagoya University

Introduction

Recently, regenerative medicine has been focused with stem cells that can regenerate lost human tissues and organs. It has become a great need to measure healthiness of cells non-invasively because of fear that non-health cells become cancer cells.

We have proposed a microwave atomic force microscope (M-AFM) which can measure electrical properties and topography of cells has been developed. Microwave signals were emitted forward to the sample and reflection signals of microwave from the sample detected at the tip-top of the cantilever. The reflection signals of the microwave were measured to determine the electrical properties of the materials.

M-AFM probes were fabricated and the electrical properties of mesenchymal stem cells were measured by M-AFM.

Experimental Setup

Probe fabrication

M-AFM probes

nanoslit of the M-AFM probe

A no doped GaAs wafer was used as the substrate of the probe. To obtain the desired structure, wet etching was used to fabricate the probe. A parallel-plate waveguide was formed by evaporating Au films onto the top and bottom surfaces of the probe. The Au films on both sides are connected at the end of the cantilever. To make microwave signals emit from tip-top of the probe, a nano-slit introduced by using focused ion beam (FIB) fabrication.

Samples

Human bone marrow mesenchymal stem cells were used as the samples. Stem cells were dehydrated by using 50%, 70%, 80%, 90%, 99.5% concentrations ethanol and dried in atmosphere.

mesenchymal stem cells

Diagram of the M-AFM system

Attachment of the M-AFM probe

AFM topography of the stem cell

Microwave image of the stem cell

viuml

Stem cells were measured by M-AFM. The M-AFM worked in noncontact mode. The scanning speed was fixed to 5 μ m/s, scanning area was 20 μ m x 20 μ m. The frequency of the microwave was 94 GHz. AFM topography image and microwave image of the output voltage that was converted from the measured microwave signals were obtained, simultaneously. The response of the microwave signals changed corresponding to the different tissues of the cell. This experimental result demonstrates that the electrical properties of the cell are different from each cell tissue. The spherical part of the cell is consider of a nucleous which is composed of proteins and nucleic acids found within the nucleus.

Conclusion

M-AFM probes were fabricated on the GaAs wafer by using wet etching process. We succeeded in measuring both the microwave response and the surface topography of dried mesenchymal stem cells after ethanol dehydration by M-AFM with the probe. As a result, the change of microwave signals depending on the cell tissues was detected.

This work was supported by the Japan Society for the promotion of Science under Grants-in-Aid for Scientific Research (A) 20246028 and (S) 18106003.

Measurement and evaluation of electrical conductivity of doped GaAs wafers using microwaves

Takahiro YOSHIDA

yoshida.takahiro@g.mbox.nagoya-u.ac.jp

Yang JU

ju@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

To control the quality of doped GaAs wafers either in the process of wafer manufacturing or device fabrication, it is important to know the electrical conductivities of the wafers. There is still no method available for measuring the conductivity nondestructively to characterize and control the quality of doped GaAs wafers during manufacturing or even the finished wafer products. In this sutudy, analytical and explicit expressions of conductivity derived by microwave theory are carried out.

Therefore, after k_0 and b_0 in Eq. (1) are calibrated using two reference wafers whose conductivities are known, a wafer's conductivity can be determined by measuring the output voltage under the same conditions and evaluating Eqs. (1) and (2).

Figure 1 shows the view of the measurement where the wafer is set on the antenna in a contact fashion, i.e., the standoff distance is set to be zero.

Using their output voltages shown above, the conductivities of wafers are evaluated from Eqs. (1) and (2). The evaluated conductivities are compared with those measured using the Hall effect measurement (HEM) method in Fig. 2. From Fig. 2, it is found that the evaluated conductivities match well with the ones measured by the HEM method. The maximum error of evaluation is less than $\pm 4.5\%$ of the conductivity of the wafers. The evaluation method and results are independent of the wafers' thicknesses. Therefore, a high-precision nondestructive evaluation method has been established.

$$V = k_0 |\Gamma_s|^2 + b_0$$
 (1)

$$\left|\Gamma_{s}\right| = \frac{1 - \sqrt{\varepsilon_{r} - j\sigma/(\omega\varepsilon_{0})}}{1 + \sqrt{\varepsilon_{r} - j\sigma/(\omega\varepsilon_{0})}}$$
(2)

 $|\Gamma_{i}|$: Absolute value of the top surface reflection coefficient

- σ : Conductivity of wafer
- ε_{e} : Relative dielectric constant of wafer
- ω : Angular frequency of microwave
- ε_0 : Permittivity of free space

Fig. 1 Photograph of the experimental instrument with a doped GaAs wafer under measurement

Fig. 2 Evaluated conductivities in comparison with those measured by the HEM method

Biography

Takahiro Yoshida received the Bachelor degree in Engineering from University of Nagoya, Japan, in 2009. He is currently a student of master's course in Nagoya University, studying nondestructive measurement by microwave.

Measurement and evaluation of electrical conductivity of doped GaAs wafers using microwaves

Takahiro Yoshida, Yang Ju

Department of Mechanical Science and Engineering, Nagoya University

To control the quality of doped GaAs wafers either in the process of wafer manufacturing or device fabrication, it is important to know the electrical conductivities of the wafers. There is still no method available for measuring the conductivity nondestructively to characterize and control the quality of doped GaAs wafers during manufacturing or even the finished wafer products.

In this paper, analytical and explicit expressions of conductivity derived by microwave theory are carried out.

$$V = k_0 \left| \Gamma_s \right|^2 + b_0 \tag{1}$$

$$\left|\Gamma_{s}\right| = \left|\frac{1 - \sqrt{\varepsilon_{r} - j\sigma/(\omega\varepsilon_{0})}}{1 + \sqrt{\varepsilon_{r} - j\sigma/(\omega\varepsilon_{0})}}\right|$$
(2)

$$\begin{split} & \left| \Gamma_s \right| : \text{Absolute value of the top surface} \\ & \text{reflection coefficient} \\ & \sigma & : \text{Conductivity of wafer} \\ & \varepsilon_r & : \text{Relative dielectric constant of wafer} \\ & \omega & : \text{Angular frequency of microwave} \\ & \varepsilon_0 & : \text{Permittivity of free space} \end{split}$$

Therefore, after k_0 and b_0 in Eq. (1) are calibrated using two reference wafers whose conductivities are known, a wafer's conductivity can be determined by measuring the output voltage under the same conditions and evaluating Eqs. (1) and (2).

The compact microwave instrument can generate microwave signals at 96 GHz (microwaves of this frequency are also referred to as millimeter waves) with power of 10 dBm. Figure 1 shows the view of the measurement where the wafer is set on the antenna in a contact fashion, i.e., the standoff distance is set to be zero.

Fig. 1 Photograph of the experimental instrument with a doped GaAs wafer under measurement

Two doped GaAs wafers (Nos. 1 and 2) are used as the reference samples to calibrate the two undetermined constants in Eq. (1). Another five wafers (Nos. 3 to 7) are evaluated using the suggested method. The detailed characteristics of the wafers are shown in Table I.

Table I	Characteristics	of the seven	doped	GaAs	wafers
---------	-----------------	--------------	-------	------	--------

Wafer No.	Conductivity (S/m)	Diameter (mm)	Thickness (µm)	Output voltage (V)
1	2.9240×10^4	84 ± 0.05	690 ± 25	-0.3731
2	$5.9880 imes 10^4$	84 ± 0.05	560 ± 25	-0.3758
3	3.6496×10^{4}	84 ± 0.05	700 ± 25	-0.3740
4	4.7393×10^4	84 ± 0.05	550 ± 25	-0.3750
5	7.5188×10^4	84 ± 0.05	510 ± 25	-0.3766
6	1.3774×10^4	76 ± 0.05	400 ± 25	-0.3693
7	2.3041×10^4	76 ± 0.05	350 ± 25	-0.3719

The two undetermined constants are calculated to be $k_0 = -0.2416446$, $b_0 = -0.1405282$.

Using their output voltages shown above, the conductivities of wafers Nos. 3 to 7 are evaluated from Eqs. (1) and (2). The evaluated conductivities are compared with those measured using the Hall effect measurement (HEM) method in Fig. 2. From Fig. 2, it is found that the evaluated conductivities match well with the ones measured by the HEM method. The maximum error of evaluation is less than $\pm 4.5\%$ of the conductivity of the wafers. The evaluation method and results are independent of the wafers' thicknesses. Therefore, a high-precision nondestructive evaluation method has been established.

Fig. 2 Evaluated conductivities in comparison with those measured by the HEM method

- 1. A nondestructive method for measuring the electrical conductivity of doped GaAs wafers using a compact microwave instrument is demonstrated.
- 2. The measurement is independent of wafer thickness.
- 3. The evaluated results agree well with those obtained with the conventional HEM method, with an error less than ±4.5%.

Evaluation of mechanical property of thin films using ultrasonic waves induced by femtosecond pulse laser

Kosuke Azuchi azuchi.kosuke@h.mbox.nagoya-u.ac.jp Yasuyuki Morita morita@mech.nagoya-u.ac.jp Jang Ju ju@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

Thin films of wiring for semiconductor integrated circuit and others could include the nano-scale defects and residual stress. The defects affect mechanical property of material. Therefore, to improve the performance and quality for the device, it is important to detect them. We evaluated them by measuring the elastic constant of the film. In this study, we use laser-induced ultrasound method for measuring elastic constants of the thin method This is non-contact film. and non-destructive evaluation technique. We measure the reflectivity changes of the pulsed light.

Specimens were used three metals of Au, Ag and Cu respectively were evaporated on glass wafer by EB deposition equipment. Figure 1 shows our optical setup. The pump light was modulated by acousto-optical device. The probe light reflected from sample surface and half mirror were entered into detector. The detector output was fed into a lock-in-amplifier to the modulation frequency.

Figure 2 shows elastic constant of specimen. Elastic constant of specimen was calculated by following equation:

$$E = \rho \left(\frac{2d}{\Delta t}\right)^2$$

Where E is the elastic constants, ρ is film density, d is film thickness and \angle t is period of ultrasonic waves transmitted between sample surface and substrate interface. We consider the calculated elastic constants of specimens are affected from crystalline structure.

Biography

Kosuke Azuchi received the Bachelor degree in Engineering from University of Nagoya, Japan, in 2011. He is currently a student of master's course in Nagoya University, studying evaluation of mechanical property of material with femtosecond pulse laser.

Evaluation of mechanical property of thin films using ultrasonic waves induced by femtosecond pulse laser Yang Ju

Kosuke Azuchi, Yasuyuki Morita,

Department of Mechanical Science and Engineering, Nagoya University

1.Introduction

A fine integrated circuit for a semiconductor and others could include nano-scale defects and residual stress. Since the defects affect quality and performance of the devices, it is more important to detect and evaluate them. And they give an influence on mechanical property of material. Therefore we used laser-induced ultrasound method for evaluating them. Our research purpose is evaluating elastic constant of thin films.

Specimens were used three metals of Au, Ag and Cu (Fig. 1). Those metals were evaporated on glass wafer by EB deposition equipment. Table1 shows experimental condition. Figure2 shows our optical setup. The pump light was modulated by acousto-optical device. Then the probe light reflected from sample surface was entered into detector, whose output was fed into a lock-in-amplifier to the modulation frequency.

3. Results

4. Discussion

Figure4 shows elastic constant of specimen obtained by this technique. Elastic constant of specimen was calculated by following equation: E

$$= \rho\left(\frac{2u}{\Delta t}\right)$$

Where E is the elastic constants, p is film density, d is film thickness and *it* is period of ultrasonic waves transmitted between sample surface and substrate interface.

Table 2.	Experimental results

	Au	Ag	Cu
Density, ρ [g/cm ³]	19.32	10.49	8.96
Thickness, d [nm]	60	100	100
Average Period, Δt [ps]	65.4	62.6	60.9
Elastic Constant [GPa]	65	107	96

Conclusion 5.

We observed ultrasonic waves in several metals with pump-probe method using femtosecond pulse laser. From the measuring results, we calculated the elastic constants of the metals. Of Au and Cu film was evaporated by EB deposition equipment, the decreasing of elastic constants was seen. On the other hand, the elastic constant of Ag film made by same method was increase.

Development of fatigue crack-healing technique for metals

Tomoya KISHI kishi.tomoya@e.mbox.nagoya-u.ac.jp Yang JU ju@mech.nagoya-u.ac.jp Atsushi HOSOI hosoi@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

Improving long-term durability and reliability of metal structures is a critical issue to decrease the environmental load from the viewpoint of reducing consumption of energy in the lifecycle. Specifically, fatigue is the main cause of failure accident in metal structures. So various methods to heal the fatigue crack have been studied. Fatigue crack healing by controlling pulsed electric current is one of them. In this method, it is revealed that the crack was closed. However, the bonding between the crack surfaces was prevented due to the oxide layer on the crack surfaces.

In this study, we improve adhesion of crack surface by surface-activated pre-coating technique, which eliminate oxide layer and coat Ni, and try to heal the fatigue crack by controlling high density electric current. Fig.1 shows the schematic view of healing technique. By using extremely adjacent probes, high-density electric current filed was caused at the crack tip

Figures 2 and 3 show the change of the crack shape before and after the application of electric current. It was observed that the microcrack was disappeared after the application of high density electric current. Crack closure is caused by the thermal expansion resulting from the high local temperature due to Joule heating by current concentration. Since the surround of expansion area is cool, the direction of expansion is restricted and toward crack closure. In this study, oxide layer preventing from bonding is eliminated, and Ni film works as the inner layer helping each crack surfaces bonding. As the results, the surface-activated pre-coating technique was successful in closing the fatigue crack and bonding the crack surfaces.

Fig.2 SEM image of fatigue crack before applying electric current.

Fig.3 SEM image of fatigue crack after applying electric current.

Biography

Tomoya Kishi received the Bachelor degree in Engineering from University of Nagoya, Japan, in 2009. He is currently a student of master's course in Nagoya University, studying the effect on healing fatigue crack in metals by applying high density electric current.

The closure of fatigue crack, the healing of microcrack and the bonding of each crack surfaces was realized after the application of high density current and eliminating oxide layer by surface-activated pre-coating in SUS316. From these results, it is expected that the crack growth rate is suppressed.

Study of copper oxide nanowires generated by stressmigration at the selectivity metal deposits

Naoki KOJIMA

kojima.naoki@g.mbox.nagoya-u.ac.jp

Yang JU

ju@mech.nagoya-u.ac.jp Department of Mechanical Science and Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

Copper oxide nanowires have been found having excellent properties, and may be used for NEMS or MEMS. To apply nanowires to practical device, a lot of nanowire pattern is needed.

In this study, we evaporated metal film on Si substrate in micro region and evaluated the nanowires generated on the micro pattern.

Experimental conditions are set below. A 60 nm thick Ta layer was deposited directly on the Si substrate to serve as the adhesive layer and 200, 400, 700 nm thick copper layer was deposited on the Ta layer by the electron beam evaporation. The size of pattern 5, 10, 15 μ m were created. Samples were heated in air at 613 K, and the time of heating was 2h, 5h, 9h, 18h.

A lot of micro pattern can be created. Nanowires are generated on the square-patterns by heating at 613 K. But there are few nanowires on the circle-pattern at the same condition.

To confirm the relationship between nanowires growth and experimental conditions, samples are observed by SEM. The minimum size of square pattern which can generate nanowires is 5 μ m. Density and length of nanowires changed by the size of pattern, heating time and Cu film thickness. Nanowires can grow by extending heating time, but varied little after 9h. The size of pattern is bigger, the length and density of nanowires become larger. Cu film is thicker, the length and density of nanowires become larger.

Fig.1 SEM images of metal patterns

Fig.2 SEM images of circle pattern after heating for 5h

Fig.3 SEM images of square pattern after heating for 5h

Fig.3 SEM images of nanowires on the 15-mm-square pattern after 5h heating

Biography

Naoki KOJIMA received the Bachelor degree in Engineering from University of Nagoya, Japan, in 2012. He will become a student of master's course in Nagoya University.

Study of copper oxide nanowires generated by stressmigration at the selectivity metal deposits

Naoki KOJIMA, Mingji CHEN and Yang JU Department of Mechanical Science and Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Introduction

Semiconductor nanowire has excellent properties and may be used as new functional element especially in NEMS or MEMS. In this paper we created nanowires by stressmigration which depend on hydrostatic stress in sample. Copper oxide is a p-type semiconductor which can react with gas such as CO. So if we can growth nanowires on the sensing element, we can make higher precision gas sensor than usual one. To apply nanowires to practical sensor, a lot of nanowire pattern is needed. In this study, we report the fabrication of copper oxide nanowires on the micro metal pattern through heating sample in air.

p: interfacial compressive stress; pL: compressive stress of lowest limit for nanowires formation

Stressmigration is a phenomenon of atoms migration driven by the gradient of hydrostatic stress. Atom diffuse a region of higher compressive stress toward that of lower stress. When Sample is heated, Cu film is subjected to thermal stress because of the mismatch in thermal expansion coefficients between the metals. And then Cu atoms diffused and migrated toward some site on the top face of Cu film. If the compressive hydrostatic stress induced by the accumulation of Cu atoms at interface between the oxide layer and the Cu film attain a critical value, Cu atoms penetrated the oxide layer via any weak spot to form nanowires.

First, two-layers photoresist were spin-coated on silicon wafer and then various pattern were written in μ -PG. A 60 nm thick Ta layer was deposited directly on the Si substrate to serve as the adhesive layer and 200, 400, 700 nm thick copper layer was deposited on the Ta layer by the electron beam evaporation. The final lift-off was

pattern, and we measured the density and length of nanowires.

carried out by dissolving the remaining photoresist in acetone. Pattern whose size is 5, 10, 15 µm was able to be created by these process. Samples were heated in air at 613 K by a ceramic heater. In this paper time of heating was 2h, 5h, 9h, 18h. After heating, copper oxide nanowires were generated on the

Results and Discussion

Fig.1. (a)SEM image of metal pattern, (b)SEM image of square pattern after heating for 5h, (c)SEM image of circle pattern after heating for 5h.

Fig.2. SEM images of nanowires on the 15-µm-square pattern after 5h heating, (a)the edge of pattern, (b)the center of pattern.

Fig.3. (a)Relation between Time and Density(Cu film thickness;700 nm), (b)Relation between Time and Length(Cu film thickness;700 nm).

Fig.4. (a)Relation between Cu film thickness and Density(15-µm-square pattern), (b)Relation between Cu film thickness and Length(15-µm-square pattern).

Fig.1 shows the result of pattern after heating. Nanowires on the square pattern grew well, but few nanowires grew on the circle pattern at the same condition. Fig.2 shows the appearance nanowires on the square pattern. From that there wasn't a great difference in length and density between the edge and center. From Fig.3 nanowires could grow by extending heating time, but varied little after 9h. And the size of pattern was bigger, the length and density of nanowires became larger. From Fig.4 Cu film was thicker, length and density of nanowires became larger.

- We can growth copper oxide nanowires on the 5-µm-square pattern. But size of pattern was small, nanowires didn't grow much.
- Density and length of nanowires didn't change over 9h-heating
- Copper film is thicker, density and length of nanowires become larger.

Development of Evaluation Technique of Electrical Properties Using Microwave Atomic Force Microscope

Takahiro NAKASHIMA

nakashima.takahiro@g.mbox.nagoya-u.ac.jp

Atsushi HOSOI

hosoi@mech.nagoya-u.ac.jp

Yang JU

ju@mech.nagoya-u.ac.jp Department of Mechanical Science and Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

The microwave response of materials is directly relative to the electrical properties of materials. However, the microwave response of materials is severely affected by the standoff distance change between the tip of the probe and the sample. Microwave atomic force microscope (M-AFM) can evaluate electrical properties by measuring microwave near-field signal and control the standoff distance by measuring the atomic force. In this study, we confirm that the microwave response imaging isn't dependent on the surface shape. Fig.1 shows the schematic diagram of the M-AFM system.

The M-AFM probe was fabricated by MEMS process. M-AFM probe consists of AFM cantilever integrated with a parallel plate waveguide. To ensure effective transmission of microwave, gallium arsenide (GaAs) was used as the substrate.

In order to confirm that microwave response imaging is not dependent on the surface shape, two difference surface shape samples were measured by original M-AFM system. Sample A had convex Au patterns, and sample B had concave Au patterns. These two types of samples are different to the shapes, but the same to the pattern of electrical properties.

As a result, Fig.2 and Fig.3 showed measurement result of sample A, and Fig.4 and Fig.5 showed measurement result of sample B. By comparing with these results, the microwave response imaging indicated the same tendency despite of the difference of the surface shapes. So it is indicated that the microwave response imaging obtained by M-AFM is not dependent on the surface shape of materials.

Fig.1 Schematic diagram of the M-AFM system

Fig.2 Fig.3 Fig.2 3D topography of Sample A Fig.3 3D microwave image of Sample A

Fig.4 Fig.5 Fig.4 3D topography of Sample B Fig.5 3D microwave image of Sample B

Biography

Takahiro Nakashima is a senior student in the department of Mechanical Science and Engineering, Nagoya University.
Development of Evaluation Technique of Electrical Properties Using Microwave Atomic Force Microscope

T. Nakashima, A. Hosoi, and Y. Ju Department of Mechanical Science and Engineering, Nagoya University

Introduction

With development of nanotechnology, evaluation technique for electrical properties in local area of materials has become a great need. To satisfy such requirement, we have proposed a microwave atomic force microscope (M-AFM). M-AFM can evaluate electrical properties by measuring microwave near-field signal and control the standoff distance by measuring the atomic force.

The microwave response of materials is directly relative to the electrical properties of materials. However, the microwave response of materials is severely affected by the standoff distance change between the tip of the probe and the sample. To solve this problem, we have developed M-AFM probe and system. In theory, the microwave response imaging is not dependent on the surface shape using the M-AFM. In this study, we confirm that the microwave response imaging is not dependent on the surface shape.

In order to confirm the theory, the microwave response of two different surface shape types of Si-Au grating samples were measured by M-AFM. As a result of comparing two measured results, it is indicated that the theory is valid.

The microwave atomic force microscope (M-AFM) probe consists of AFM cantilever integrated with a parallel plate waveguide. To ensure effective transmission of microwave, gallium arsenide (GaAs) was used as the substrate.

- (a) Patterning of the etching mask for the probe tip fabrication
- (b) Forming the tip of the probe by wet etching
- (c) Patterning of the stencil mask to form the waveguide on the top surface
- (d) Coating the metal film on the top surface
- (e) Forming the waveguide by lift-off process
- (f) Patterning of the etching mask for cantilever fabrication
- (g) Forming the cantilever of the probe by wet etching
- (h) Patterning of the etching mask on back side for holder fabrication(i) Forming the holder of the probe by wet etching
- (j) Coating metal film on the bottom surface to form the waveguide
- (k) Forming the open structure at the tip by FIB fabrication

(a) SEM image of the tip

(b) SEM image of the cantilever

(c) SEM image of the M-AFM probe

Diagram of the M-AFM system

In order to confirm that M-AFM can actually maintain a constant standoff distance, two difference surface shape samples are measured. One has convex Au patterns (Sample A), and the other has concave Au patterns (Sample B). These two types of samples are different to the shapes, but the same to the pattern of electrical properties. So if M-AFM can actually maintain a constant standoff distance, the microwave scanning results of these two samples show the same tendency. The M-AFM can sense the topography and microwave image of materials in one scanning process simultaneously. These results indicate that M-AFM can discriminate electrical properties of the sample.

By comparison the results between sample A and sample B, the two microwave imaging show the same tendency despite of the difference of the surface shapes. Therefore, it is indicated that the microwave response imaging obtained by M-AFM is not dependent on the surface shape of the materials.

Study on detection of delamination in unidirectional CFRP by microwave reflectometry

Yuhei Yamaguchi yamaguchi.yuhei@e.mbox.nagoya-u.ac.jp Yang Ju ju@mech.nagoya-u.ac.jp Atsushi Hosoi hosoi@mech.nagoya-u.ac.jp Department of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

Carbon fiber reinforced plastic (CFRP) composites have higher specific strength and specific stiffness than existing metal materials. However, the presence of defects as delamination may significantly affect the strength and stiffness of CFRP. Thus, the detection of delamination in CFRP is a great issue.

From the reason described above, we attempted to detect defects in CFRP by noncontact, rapid and high sensitive microwave reflectmetry utilizing the focusing mirror sensor (Fig. 1.). Microwave reflectometry is a method to detect defects by measuring the phase variation of reflected wave from the sample. Besides, a focusing mirror sensor has high resolution, high sensitivity and long standoff distance. However, the resolution and sensitivity of the sensor for the delamination in CFRP depends on the standoff distance and frequency.

Thus, in this study, the experiments were conducted to decide an optimal frequency and standoff distance for the detection of delamination in CFRP utilizing the focusing mirror sensor. The unidirectinal CFRP inserted circular kapton films whose thickness is 100 μ m internally instead of delamination was applied as a sample. Additionally, the detection of defects utilizing the focusing lens sensor (Fig. 2) and the waveguide sensor (Fig. 3) was conducted in each optimal experiment condition.

Figure 4 showed the result of imaging of the phase variation utilizing the focusing sensor. The great phase variation in the center of this image indicated the presence of defects.

Biography

Yuhei Yamaguchi attends bachelor degree in Nagoya University of department of engineering.

Fig.1 The focusing mirror sensor

Fig.2 The focusing lens sensor

Fig.3 The waveguide sensor

Study on detection of delamination in unidirectional CFRP by microwave reflectometry

Yuhei Yamaguchi, Yang Ju*, Atsushi Hosoi Department of Mechanical Science and Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan *: ju@mech.nagoya-u.ac.jp

Carbon fiber reinforced plastic (CFRP) composites have higher specific strength and specific stiffness than existing metal materials. However, the presence of defects as delamination may significantly affect the strength and stiffness of CFRP. Thus, the detection of delamination in CFRP is a great issue.

In this study, we attempted to detect defects in CFRP by noncontact, rapid and high sensitive microwave reflectometry utilizing a focusing mirror sensor (Fig. 1(a)) which has high resolution, high sensitivity and long standoff distance.

Additionally, the detection of defects was conducted utilizing a focusing lens sensor (Fig. 1(b)) and a waveguide sensor (Fig. 1(c)).

Fig. 1 Using sensors. (a) focusing mirror sensor. (b) focusing lens sensor; and (c) waveguide sensor.

In this study, unidirectional CFRP inserted circular kapton film whose thickness is 100 μm internally instead of delamination was applied as a sample.

Three experiments utilizing the focusing mirror sensor were conducted.

- At first, metal plates was put under the CFRP sample(Fig. 2). With different frequency, the sample was scanned and phase variation was measured. After that, optimal frequency was decided from sensitivity for metal plates.
- With different standoff distance, the sample was scanned on defect area and phase variation was measured. After that, optimal standoff distance was decided from sensitivity for film.
- In optimal condition decided above, 2D scan of the sample was conducted around defects area. After that, 2D scan utilizing other sensors was conducted.

Fig. 2 Schematic of experiment 1.

Figure 3(a) showed the result of experiment 1. To decide optimal frequency, the relation between frequency and signal-noise ratio was showed in Fig. 3(b). Frequency f=75GHz that had the highest signal-noise ratio was decided the optimal frequency.

Figure 4(a)~(e) showed the results of experiment 2. To decide optimal standoff distance, the relation between standoff distance and signal-noise ratio was showed in Fig. 4(f). Standoff distance l=11.8mm was decided the optimal standoff distance.

Figure 5(a)~(c) showed the results of experiment 3 that imaged the phase variation utilizing the focusing mirror sensor (f=75GHz, l=11.8mm), the focusing lens sensor (f=75GHz, l=42.1mm) and the waveguide sensor (f=75GHz, l=2.8mm), respectively.

Figure 5(a) and 5(b) indicated that the focusing mirror and lens sensor could detect film. The focusing mirror and lens sensor had high sensitivity because of focusing microwaves at depth of the film inserted in the specimen. Therefore, film could be detected sensitively.

On the other hand, as Fig. 5(c) showed, the waveguide sensor detected the fiber orientation in surface more sensitively than the film in the specimen due to attenuation of microwaves.

These results indicated that the detection method focusing microwave had the potential of detecting the delamination in CFRP.

- 1. The waveguide sensor could detect the fiber orientation sensitively.
- The focusing mirror sensor (*f*=75GHz, l=11.8mm) and the focusing lens sensor (*f*=75GHz, l=42.1mm) could detect film whose thickness is 100µm in unidirectional CFRP.
- 3. The detection method focusing microwave had the potential of detecting delamination in CFRP.

What Is the Adequate Feature of a Robot for Children with Autism in Robot-Assisted Therapy?

Jaeryoung LEE lee.jaeryoung@a.mbox.nagoya-u.ac.jp Hiroki TAKEHASHI h.takehashi@esi.nagoya-u.ac.jp Chikara NAGAI nagai@coe.mech.nagoya-u.ac.jp Goro OBINATA obinata@mech.nagoya-u.ac.jp Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Autism has the features of reciprocal social interaction associated with impairment in communication skills and stereotyped behavior. Recently, various robots have been used in research to mediate interaction for children with autism. Previous studies suggest that social interaction and communication skills of autistic children have improved by playing with therapeutic robots.

Social skills	Questionnaire			
Eye contact	Does he or she make eye contact?			
Gesture	Does he or she use gestures to express his or her feeling?			
Facial expression	Does expression on his or her face match what he or she is saying?			
language	Does he or she use language to express his or her feeling?			

However, the physical features of many

therapeutic robots for autistic children have not been tested as to their ability to improve social skills. Moreover, previous work has not examined the interaction between autistic children and robots with verbal functions, and therefore has only focused on non-verbal communication skills.

Therefore, we have conducted two studies in order to examine these issues. Study 1 (Fig.1) explores the relationship between the features of interactive devices that autistic children usually play with and the development of the children's social skills. Study 2 (Fig.2 and Fig.3) investigates the possibility of robots with verbal functions affecting the communications skills of autistic children.

the children exhibit 4 particular facial expressions.

Surprised

Happy Sad Surprised Angry Fig. 2 Facial expression game, in which the prompters make

Fig. 3 The mean of eye contact, responding to verbal cues and facial expression game score in the experiment with robot are higher than those with human.

Biography

Jaeryoung Lee received the Bachelor degree in Mechanical engineering from Pusan National University in 2009. She is currently a Master student at Nagoya University, focusing on the studies of Human Robot Interaction in Autism therapy.

What Is the Adequate Feature of a Robot for Children with Autism in Robot-Assisted Therapy?

Jaeryoung Lee¹, Hiroki Takehashi², Chikara Nagai¹, Goro Obinata² ¹Nagoya University, ²EcoTopia Institute, Nagoya, Japan

Sensory perception by Electrical Stimulation

Miyako BANNO <u>banno.miyako@g.mbox.nagoy-u.ac.jp</u> Goro OBINATA <u>obinata@mech.nagoya-u.ac.jp</u> <u>Chikara NAGAI</u> <u>nagai@coe.mech.nagoya-u.ac.jp</u> School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-86-3, JAPAN

Abstract

Our research aims to develop a new electric stimulation device to present information to humans, especially, upper limb prosthesis users. The performance of upper limb prosthesis improves these days, and the upper limb prosthesis which moves by user's intention is developed. However, the upper limb prosthesis doesn't have artificially sense tactile feedback.

We proposed feedback method using electric stimulation for upper limb prosthesis users. When a suitable current flows through a part of body, people can distinguish directions of the current. Our research investigated that people can distinguish directions of two currents.

We used to four electrodes and 2channel currents to present several combination patterns (Fig.1). The waveform is rectangular pulse, duty ratio is 5%, and frequency is 2000Hz (The frequency is not painful). The results of the first experiment show that the subjects couldn't distinguish directions of two currents which is the same frequency. Next, we experimented

with 2000Hz and 2001Hz. The subjects could distinguish directions of two currents which are different to frequency. Moreover, the subjects could distinguished the change of one current frequency (another frequency is fasten to 2000Hz). By changing

frequency, two currents interfere, and the beat frequency occurs. It was verified that the proposed method accomplished presentation of 4bit resolution information using electric stimulation without changing a voltage.

Fig.1 the place of four electrodes and direction of flowing currents

Tabble.1 direction of currents and paten number

1	2	3	4
\rightarrow	\rightarrow	-	↓
\longrightarrow		\rightarrow	+

Tabble.2 one of the results of experiment using two frequencies

Subject1		Subjects answer			
		\bigcirc	2	3	4
n in	(1)	80	20	0	0
llowing	2	0	100	0	0
nattern	3	0	0	100	0
pattern	4	0	0	0	100
					[%]

Biography

Miyako Banno is currently a school of engineering department in Nagoya University. She is majoring in human engineering.

Sensory Perception by Electrical Stimulation (1) Miyako Banno, (1) Goro Obinata, (1) Chikara Nagai, (1) Hitoshi Hirata

- (1) School of Engineering, Nagoya University
- (2) Department of Mechanical Science & Engineering, Graduate School of Engineering, Nagoya University
- (3) Global COE Micro-Nano Mechatronics, Graduate School of Engineering, Nagoya University
- (4)Department of Hand Surgery, Graduate School of Medicine, Nagoya University

March, 2012

Purpose

We have already designed many types of upper limb prosthesis with electric actuators to perform several tasks. However, we have not achieved dexterous handling like human hands yet. One of the reasons is lack of sensory feedback of tactile information to the user. In the most contexts around upper limb prosthesis, the users can use the visual feedback with their eyes but cannot obtain any tactile information because of the absence of their hands. There exist several tactile sensors which can collect simultaneously the several kinds of tactile information like human tactile receptors. However, there does not exist the direct way for feeding back the signals of tactile sensors to the users.

Our research aims to develop a new electric stimulation device to present information to humans, especially, upper limb prosthesis users.

Experiment

device

We constructed an experimental setup consisting of surface electrodes, voltage amplifier and electrical function generator. Using the setup, we can provide any voltage pattern of electrical signals to the subjects through the surface electrodes.

Electrical Stimulator	
Signal Generator	Left Arm
Statement of the	
Power Amp	Electric Stimulation

experiment1

In the first experiment, we investigated a relationship between duty ratio and sensory perception. We used a ractangular pulse. The frequencies were 2000Hz and change duty ratio from 3% to 15%. Each subject provided current of centripetal or opposite direction at random. They evaluated the difference of the stimulation while the different duty ratios were provided, and check the accuracy ratio.

experiment2

We investigated sensory perception with two channel currents. The duty ratio was 5%. Each subject provided currents of centripetal or opposite directions at random. They drew the place of the stimulation and check the strength of the sense.

experiment3

Fig.2 the place of four electroidestion of two currents

We investigated sensory perception with two channel currents which are different to frequency (2000Hz and 2001Hz). Each subject provided currents of centripetal or opposite directions at random.

experiment4

We investigated the change of frequency. One frequency was fasten to 2000Hz, another changed from 2000Hz to 2010Hz.

Result

experiment1

All subjects to obtain the highest accuracy rate at 5% duty cycle.

Accuracy rate is greater than 5% of the duty ratio will be reduced.in identifying a polarity change is considered difficult to identify larger the duty ratio. When the duty ratio of 3%, accuracy rate reduce so that current flow time will be shortened Fig.3 Experimental results: Duty ratio vs. Accuracy

experiment2

The place of the stimulation present obvious difference. The result suggests that the directions can be distinguished.

experiment3, and4

In two experiment, four subjects distinguished higher than 90percents. The figure is adequate high.

Table. T Experimental results: accuracy rate changing directions							
Subject	s1	s2	s3	s4	s5	All	
Accuracy rate	95.0	90.0	80.0	95.0	90.0	90.0	
Tab	Table.2 Experimental results: accuracy rate changing frequency						
Subject	s1	s2	s3	s4	s5	All	
Accuracy rate	97.5	82.5	90.0	92.5	90.0	90.5	

Conclusion

By changing frequency, two currents interfere, and the beat frequency occurs. It was verified that the proposed method accomplished presentation of 4bit resolution information using electric stimulation without changing a

voltage. We suggest that the method can use sensor feedback of direction of touch power.

Table.3 Characterization of Sensory Nerve Fibers

Fiber Type	Function	Diameter [µm]	Frequency [Hz]			
Unmyelinated Fiber (C Fiber)	Polymodal Nociceptors, Temperature, Slow Pain	0.4-1.5	5			
Small Myelinated Fiber (Αδ Fiber)	Mechanoreceptors, Pressure, Temperature, Fast Pain	1-5	250			
Large Myelinated Fiber (Aβ Fiber)	Touch, Pressure	5-15	2000			

Simulation of Human Walking with Orthosis for **Keeping Balance of Upper Body**

Yoshiho Uchiyama uchiyama.yoshiho@b.mbox.nagoya-u.ac.jp Goro Obinata obinata@mech.nagoya-u.ac.jp Chikara Nagai nagai@coe.mech.nagoya-u.ac.jp Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

We have developed a powered assistive orthosis for paraplegic persons (Fig.1). Our purpose is to help rehabilitation for the person who has disturbance of motility and to substitute this orthosis for a wheelchair. This orthosis has 4 actuators which placed at knee joints and hip joints. These actuators are controlled by Central Pattern Generator (CPG). In aspect of rehabilitation we can get adequate assist to wearer. However this orthosis is limited to the motion on the sagittal plane, and not ensure stability of frontal plane. In order to design safer orthosis against three dimensional disturbances, we planned to implement new actuator at waist joint and simulated walking motion of human who wears the proposed orthosis. In the proposed orthosis, we can provide CPG-based power assist on the joint motion both on frontal and sagittal planes. By introducing one actuator at waist joint, we can control the motion balance on frontal plane.

The model dynamics of the coupled human-orthosis is represented by a 10-rigid-link system. In this model, we newly embedded rotational joint at waist, in addition to conventional joints at both thighs and both legs. These joints are controlled by CPG. The CPG controller consists of 13 oscillators

which have the sensory feedbacks. The mutually entrainment of the rigid-link system and the controller has a potential of generating walking motions. The parameters of the oscillators and the connection in the network are optimized with a performance index by using a genetic algorithm. With the optimized controller we have achieved the successful simulation of steady gait (Fig.2).

Using this model we have searched how robust

Powered Fig.1

Fig.2 The model of steady gait.

against disturbances in frontal plane. We added various external forces to this model and examined if the model could continue walking or fall down. As a result it continued walking at some cases. On the other hand falling down case can be divided two patterns, and if we prevent these we develop orthosis that prevent falling down. The simulation result can be used as a guideline for the new orthosis.

Biography

Yoshiho Uchiyama is student of Department of Mechanical Engineering, Nagoya University. His research interests are biomechanics, human motion simulation, welfare engineering. This year, he will enroll at Gradeate School of Engineering, Nagoya University.

Simulation of Human Walking with Orthosis for Keeping Balance Upper Body Yoshiho Uchiyama¹, Goro Obinata², Chikara Nagai³

¹School of Engineering, Nagoya University ²EcoTopia Sience Institute, Nagoya University

³Graduate School of Engineering, Nagoya University

<Introduction>

.....

The goal of this work is help rehabilitation for the person who has disturbance of motility and to substitute this orthosis for a wheelchair.

center position.

result can be used as a guideline for the new orthosis.

Study of Operability on a Lever Steering System

Ryohei Sano

sano.ryouhei@a.mbox.nagoya-u.ac.jp

Goro Obinata obinata@mech.nagoya-u.ac.jp Chikara Nagai

nagai@coe.mech.nagoya-u.ac.jp School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract

We generally use circular movements with steering wheel in vehicle. (Fig. 1a) But today we can design various kinds of steering movements by using steer-by-wire system(The steer-by-wire system in vehicle substitutes the typical mechanical linkage with electric wires.). So other steering movements can potentially have better operability. Our purpose is to find more operable movements than circular movements.

To study operability of steering movements, we used a robot manipulator and a force sensor. An experimental setup is shown in Fig. 2. The robot manipulator is impedance-controlled. So it allows us to simulate various kinds of steering movements and amount of force to move. At the beginning of research, we simulated two steering movements; a forth-back steering movement (Fig.1 (b)) and a circular steering movement like a steering wheel. The both movements are operable with one hand. We compared their movements with reaching task. In the reaching task, an operator controls his hand position to target position as quickly as possible. Target and hand position (Mark) are shown in the display. Fig. 3 shows rise time with some viscosities. From the result of the task, forth-back movements have advantage in steering speed.

This result implies some steering movements are more operable than circular movement with steering wheel. But the results of this task are not enough. To find more operable steering movement, we have to consider other movements and aspects like a steering stability, fatigue of operators and so on.

(a)Circular movements (b) Forth-back movements Fig. 1 Steering movements

Fig. 2 Experimental setup

Viscosity[Ns/m] Fig. 3 Rise time from 10% to 90 % of the target position with two steering movement

Biography

Ryohei Sano is a student in the Department of Mechanical Engineering, Nagoya University. He enters the Graduate School of Engineering, Nagoya University next year, and continues to study engineering for human.

Study of Operability on a Lever Steering System

Ryohei Sano¹, Goro Obinata², Chikara Nagai³ ¹School of Engineering, Nagoya University ²EcoTopia Science Institute, Nagoya University ³Graduate School of Engineering, Nagoya University

PURPOSE

The steer-by-wire (SBW) system in vehicle substitutes the typical mechanical linkage with electric wires. Using SBW technology, we can design various kinds of steering movement. And other steering movements can potentially have better operability . So we used a Robot manipulator and a force sensor to simulate various kinds of steering movements to study operability of steering movements.

EXPERIMENT

RESULTS

CONCLUSION

In forth-back movements, human can control steering more speedy than that in circular movements. And control characteristics of forth-back movement is dependent on operator's posture heavily. If we can design steering movements appropriately, some steering movements are more operable than circular movement with steering wheel.

Analysis on Hand Motions in Activity of Daily

Living

Toshikatsu TANASE tanase.toshikatsu@h.mbox.nagoya-u.ac.jp Goro OBINATA obinata@mech.nagoya-u.ac.jp Chikara NAGAI nagai@coe.nagoya-u.ac.jp Nagoya University Furo-cho,Chikusa-ku,Nagoya 464-8603,Japan

Abstract

Most robot hands today are impractical in welfare field due to either too a large of actuators causing high energy consumption or a too small number of joints constraining the robot hand motions.

Our goal in this study is to reveal the needs of the hand motions in the daily life. Therefore we conduct experiment to reveal human hand mechanism which allows us to develop the prosthetic robot hand of simple mechanism with a few actuators achieving the versatile tasks of human hand.

In our experiment, we selected power grasping and pinching tasks (Fig.1) for motion analysis. We used 3D-motincapture system to measure hand joint angles of human who performs power grasping and pinching tasks. The hand motion can be realized by robot actuators whose number is same with the number of principal components of human hand motion.

The results of motion analysis show that human hand motion has 3 principal components (Fig.2).

Fig.1 Pinching and power grasping

Fig.2 Reconstruction of pinching and power grasping

This means we can reduce the actuator number of the robot hand for realizing power grasping and pinching tasks. The results obtained in this study can be used as a guideline to develop a simple-structured robot hand.

Biography

Toshikatsu Tanase is student of Department of Mechanical Science & Engineering, School of Engineering, Nagoya University. This year, he will graduate there and enroll at Graduate School of Engineering, Nagoya University.

Analysis on Hand Motions in Activity of Daily Living

¹Department of Engineering, Nagoya University ²Graduate School of Engineering, Nagoya University

³Eco Topia Sience Institute, Nagoya University

Previous Research & Goal

Most robot hands today are impractical in welfare area due to either too many actuators causing too much energy consumption or due to a too small number of joints constraining the robot hand motions.

Our goal is to reveal human hand mechanism which allows us to develop the prosthetic robot hand of simple mechanism with a few actuators achieving the versatile tasks of human hand. And we want to find out enough number of actuators to express the versatile hand motions in daily living.

Experiment Approach

1. Assumption of Skelton Model of The Hand

Total 21 degrees of freedom

2. Selection of The hand motions

Power grasping

pinching

3. Measuring angle of joints & Contact Force

4. Principal Component Analysis(PCA)

Results

PCA results of Multiple motions

Motion	(Dall	(1)700g (2)3	()all(2(3)	①700 g②③④ 216g	(Dall Q3@ all
1th PC	84.6%	69%	66.8%	76.6%	64.3%
2th PC	6.61%	22.7%	22.2%	13.4%	20.8%
3th PC	3.33%	2.85%	5.03%	2.8%	5.94%
4th PC	1.69%	1.39%	1.65%	1.62%	2.15%
5th PC	1.04%	0.934%	1.01%	1.45%	1.70%

Total cumulative contribution ratio over 90%

We estimated the number of PCs enough to express all of these motions by analyzing these signals by PCA. As a result, we found out that these motions can be expressed by 3 PCs, since total cumulative contribution ratio is over 90% by 3 PCs.

Focus on factor loading of PC, and we find out what joints are correlative with 1th~3th PC. We showed that correlative joints with 1th PC and 2,3th PC are red and green (Fig.1). As a result, we found out that most of the required joints to express these hand motions can be moved by 1th~3th PC.

Conclusion

We found out that most of the required joints to express these hand motions can be moved by 1th \sim 3th PC and to be able to reconstruct these motions by 1th \sim 3th PC sufficiently (Fig2).

We concluded that these hand motions such as power grasping and pinching can be made with 3 actuators. Our result can be used as a guideline to develop a simplestructured robot hand.

<4> Appendix

- a) Travel Schedule
- b) Pictures

Travel Schedule

March 7 – 17, 2012

月日	都市名	現地時間	行程
3月7日 (水)	名古屋大学豊田講堂 中部国際空港 成田空港 成田空港 ロサンゼルス空港	6:00 8:25 9:35 15:30 8:45	大型バスにて中部国際空港へ 空路日本航空にて成田空港へ 空路デルタ航空にてロサンゼルス空港へ 専用車にてホテルへ
3月8日 (木)	ホテル UCLA ホテル	9:30 11:00-15:00 15:30-	Poster presentations Lunch party
3月9日 (金)	ホテル UCLA ホテル	10:00 13:00-16:00	Lab tours
3月10日 (土)	ホテル UCLA ホテル	9:30-	Lab tours
3月11日 (日)	ホテル ロサンゼルス空港 デトロイト空港 ホテル	11:35 19:00	専用車にて空港へ 空路デトロイト国際空港へ 専用車にてホテルへ
3月12日 (月)	ホテル Univ. Michigan ホテル	9:00- -17:30 18:00-20:00	Poster presentations Lab tours Banquet
3月13日 (火)	ホテル Univ. Michigan Toyota Tech Center ホテル	9:00-14:00 15:00-17:00	Lab tours Technical tours
3月14日 (水) 3月15日			
(木) 3月16日 (金)	ホテル デトロイト空港	12:00 15:30	専用車にて空港へ 空路中部国際空港へ
3月17日 (土)	中部国際空港 名古屋大学豊田講堂	19:05 21:00 頃	到着.入国手続き 大型バスにて名古屋大学へ 豊田講堂前到着後解散

